
Ufi: LEcopy

(0

&N OBJECT ORIENTED DESIGN AND IMPLEMENTATION
OP THE IDEFo ESSENT IAL DATA. MODEL

USING ADA AND AN ADA BASED EXPERT SYSTEM

THESIS

F U SI I'GTerry LeVere Kitchen

Captin,~ USAF

AFIT/GOS/E,.G /90D-07 f 9
S JAN23 1991f .

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio



AFIT/GCS/ENG/90D-07

AN OBJECT ORIENTED DESIGN AND IMPLEMENTATION

OF THE IDEFo ESSENTIAL DATA MODEL

USING ADA AND AN ADA BASED EXPERT SYSTEM

THEFS

Presented to the Faculty of the School of Engineering Cpy

of the. Air Force Institute of 'Technology 6

Air University

In Partial Fulfillment of the soossim Yor I

Requirements foz the Degree of 9IS RA&I
DTIC TAB

Master of Science (Computer Science) ltonouoed 0
Justifioation

Distributionf
Terry LeVere Kitchen, B.S.C.S. Availability Codes

Captain, USAF AiiSpecial

DECEMBER, 1990

Approved for public release; distribution unlimited



Preface

This investigation develops and implements an Ada based object oriented design (QOD) of

the IDEFO Essential Data Model called the Essential Subsystem, which incl~ides an Ac. t. based ex-

pert system for IDEFo model syntax checking. IDEF0 is a graphic aipiroach to system description

developed by SotTech, Inc. for the U.S. Air Force Program for-Integrated Computer-Aided Manu-

facturing (IOAM) and is a subset of the Stiuctured Analysis (SA) language (30,,;S. The ThF!e

Essential Data Model is an entity-relationship (E-R) model of the IDEFo Jenguage anid represents

the fundamental (essentiai) -information of an IDEFo model.

The development of the-Essential Subsystem, as well as SAtr,.)A 11, is part of ongoing research

at the Air Force Institute of Technology, in aissuciatin Lh f he Strategic Defense Initiative Or-

ganization (5DIO), on the use of IDEFO as-a-5oftware requirements modeling -inetlidolosy. This

research iE performed to demonstrate the feasibility of Ada and~object oriented-design tevhniq4%es

in the, development -of CASE, tools und the use of Ada-in expert systerm, but the primaxy objetim-

?(Ovide a ubsystem Mt~lt w:il) be inC egrated with SAtool Ii.

I wonld like to thank ,he miary people who supporied me during this research. I begin 'by

thanking Capt Jay-Evan Tevis with whom much of this research, has-been parformed. I-tharak my

thesis co~'advisor, Capt- Robert Hammell, for his alwaya forthright advice and-guidance throughout

this research. I would also like to thank my' thesis. co-aivisor, Dr. Gary Lamiont, for providing

additional meaning to -the term learning and professionalism. In addition, I thank tb. other

member of my committee, Dr. Thomas Hartrum who assumed the -role of customer andprovided

many spirited discussions on the IDEFo language. Finally, my greatest thanksgo, to my wife, Kathy,

whose love, devotion, and moral support kept-me going through all th-p, long.(ayx eand niglits,

Terry LeVete Kitchehi



Table of Con tents

Page

Table of Contents.... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ....

List of Figures .. .. .. .. .. .. .. ... .. ... .. ... .. ... ... .. .. ... .. viii

List of Tables .. .. .. .. .. ... .. ... .. ... .. ... .. ... .. ... .. ..... x

Abstract. .. .. .. .. .. ... .. ... .. ... .. ... .. ... .. ... .. ... .... xi

1. INTRODUCTION .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ......

General Issues. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... 1

Background .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... .... 2

Computer Aided Software Engineering (CASE) .. .. .. .. .. .. ..... 2

Structured Analysis (SA). .. .. .. .. .. .. .. ... .. ... ...... 2

IDEFO ... .. .. .. .. .. .. .. .. .. .. .. .. ... .. ... .. ... 3

Data Dictionary. .. .. .. .. .. .. .. .. .. .. ... ... .. ...... 3

SAtool. .. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .... 4

Expert Systems. .. .. .. .. .. .. .. .. .... ... .. ... .... 4

Expert System Tools .. .. .. .. .. .. .. .. .. ... .. ... .. ... 5

Additional Background. .. .. .. .. .. .. .. ... .. ... .. ... .. ... 5

Problem Statement. .. .. .. .. .. .. ... .. .. ... ... .. ... .... 7

Assumptions .. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... 7

Standards. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... .... 7

Research Approach. .. .. .. .. .. .. ... .. ... .. ... .. ... .... 8

Equipment. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ...... 9

Scope and Limitations. .. .. .. .. .. .. ... .. ... .. ... .. ..... 9

iii



Page

Sequence of Presentation . ............................. 10I

Readership .. .. .. .. .. .. .. .. .. ... ... .. ... .. ... .. .... 10

I.LITERATURE REVIEW .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. 11

Introduction. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. .... 11

IDEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 1

AFIT and IDEFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

IDEFo Modifi':ations .. .. .. .. .. .. .. .. .. ... .. ... .. ..

Ar Abstract Data Model for IDEFO........................ 16

Mapping E.-R Model Constructs to Objects in an QOD............... 24

The Keystone System Design Methodology .. .. .. .. .. .. .. .. ... 24

Object Oriented Systems Analysis Method .. .. .. .. .. .. .. .. .. 25

An Earlier Mapping Methodology for SAtool II. .. .. .. .. .. .. ... 25

Expert Systems. .. .. .. .. ... .. ... .. ... .. ... .. ... .... 26

Integration of Expert Systems with CASE Tools. .. .. .. .. .. .. .. .... 28

SAtool with Syntaxc Validation .. .. .. .. .. .. .. .. .. .. .. ... 29

Specification-Transformation Expert System (STES). .. .. .. .. .... 30

Visible Analyst Workbench. .. .. .. .. .. .. .. .. .. .. ... .... 31

Summary. .. .. .. .. .. .. .. .. .. ... ... .. ... .. ... .. .... 32

II.REQUIREMENTS ANALYSIS. .. .. .. .. .. .. .. ... .. ... .. ... .... 33

Introduction. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. .... 33

Overview. .. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... 33

A Review of the Requirements Models. .. .. .. .. .. .. ... .. ... .. 36

Inconsistencies in the IDEF0 Essential Data Model and Data Dictionary Format 37

Inadequacies in the IDEF0 Essential Data Model and Data Dictionary Format 37

Multiple Source-Destination Groupings .. .. .. .. .. .. .. .. .. .. 30

Multiple Decompositions of Data Elements .... .. .. .. .. .. .. .... 40

iv



Page

Junctors. .. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. 41

A Revised IDEF0 Abstract Data Model .. .. .. .. .. .. .. .. ... .. .. 42

A Revised AFIT Data Dicticinary Format. .. .. .. .. .. .. .. .. ... .. 52'

The Expert System Requirements .. .. .. .. .. .. .. ... .. ... .. .. 55

Summary. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... ... 58

IN'. DESIGN .. .. .. .. .. ... .. ... .. ... .. ... ... .. ... .. ... ... 59

Introduction. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... ... 59

The Level of Observation in Object Class Selection. .. .. .. .. .. .. .... 60

E-R Model to OOD Mapping Technique .. .. .. .. .. .. ... .. ... .. 64

The Key Abstractions. .. .. .. .. .. .. .. .. ... .. ... ... .. .... 66

Essential Data Model Key Abstractions:.. .. .. .. .. .. .. .. .. .. 66

The Data Dictionary. .. .. .. .. .. .. .. .. ... .. ... .. .... 70

The CLIPS/Ada Expert System Interface. .. .. .. .. .. .. .. .... 71

The Essential Date Model Information. .. .. .. .. .. .. .. .. .... 72

Error Handler .. .. .. .. .. .. ... .. ... .. ... .. ... .... 72

The Mechanisms .. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. 73

File Formats. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. .... 74

Expert System. .. .. .. .. .. .. .. ... .... .. ... .. ... .. .. 76

Preliminary Design .. .. .. ... .. ... .. ... .. ... .. ... .. .. 79

The Generic Multiple Object Manager. .. .. .. .. .. .. ... .. ... .. 79

The Semantics .. .. .. .. .. .. .. .. ... .. ... .. ... ... .. .... 82

The Relationships and Visibilities. .. .. .. .. .. .. .. ... ... .. .... 83

Summary. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... .. 84

V. IMPLEMENTATION, TESTING, AND INTEGRATION. .. .. .. .. .. .. .... 87

Introduction. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... .. 87

The Essential Subsystem Packages .. .. .. .. .. .. .. .. ... .. ... .. 87

v



Page

Environmnent-Types .. .. .. .. .. .. .. .. .. .. ... ... .. .... 89

Geiieric..Multiple..Object..Manager .. .. .. .. .. .. .. ... ... ... 90

The Essential Data Model Object Classes. .. .. .. .. .. .. .. .... 90

The Essential Data Model Object Class Managers. .. .. .. .. .. .... 91

Essential -FactUtilities .. .. .. .. .. .. .. .. .. . .. .. . .. .... 92

CLIPS-.Working..Memory-Interface .. .. .. .. .. .. .. ... .. .... 94

EssentialIO . .. .. .. .. .. .. .. .. ... .. ... .. ... .. .... 95

Data-Dictionary .. .. .. .. .. .. .. .. .. .. ... .. ... ... ... 96

Error-Handler .. .. .. .. .. .. .. .. .. ... .. ... .. ... .... 96

Expert System. .. .. .. .. .. .. .. .. ... .. ... .. ... ... .. .. 97

Documentation Standards .. .. .. ... .. ... .. ... .. ... .. .... 98

Order Of Analysis. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. 99

Testing .. .. .. .. .. .. .. .. ... .. ... .. ... ... .. ... .. .. 101

Integration with SAtool 11. .. .. .. .. .. .. ... .. .. .. ... ..... 102

Summary .. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ..... 103

VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS. .. .. .. .. ..... 106

Introduction .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. .... 106

Research Summary .. .. .. .. .. .. .. ... .. ... ... .. ... .. .. 106

Conclusions. .. .. .. .. .. .. ... .. ... .. ... .. ... ... .. .. 108

Recommendations. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. 110

Appendix A. ESSENTIAL SUBSYSTEM PH fSICAL DE31GN .. .. .. .. .. .. .. 114

Appendix B. ESSENTIAL SUBSYSTEM CONFIGURATION GUIDE........... 130

Appendix C. CLIPS/ADA CONFIGURATION GUIDE.................... 133

Appendix D. CLIPS RULE BASE................................. 138

Appendix E. PACKAGE AND SUBROUTINE HEADERS.................. 142

vi



Page

Appendix F. SAMPLE IDEFo MODEL OUTPUT FILE .................. 145

Appendix G. ESSENTIAL SUBSYSTEM TEST AND DEMONSTRATION PROGRAM

SCRIPT .................... .......................... 149

Bibliography .. .. ... . ... ... .. .. ... ... .. .. .... .. . ... ... ... 156

V ita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

The following thesis volume is maintained at the Air Force Institute of Technology, Department

of Electrical and Computer Engineering. The points of contact are Dr. Gary B. Lamont or

Dr. Thomas C. Hartrum.

Volume II: Essential Subsystem Source Code

vii



List of Figures

Figure Page

1. IDEFo Structured Decomposition ................................. 13

2. Sample IDEF0 Diagram ....................................... 14

3. Data Dictionary Entry Format for Activity .......................... 16

4. Data Dictionary Entry Format for Data Element ........................ 17

5. Modified Entity Relationship Diagram ............................... 18

6. IDEFo Activity Essential Data Model ............................... 20

7. IDEFo Data Element Essential Data Model ............................ 21

8. IDEFo Activity Drawing Data Model ............................... 22

9. IDEFo Data Element Drawing Data Model ........................... 23

10. IDEFo Diagram Illustrating Multiple Source-Destination Groupings ......... .. 39

11. Abbreviated Data Dictionary Entry for Data Element 'Floppies' .............. 40

12. Revised Abbreviated Deta Dictionary Entry for Data Element 'Floppies' ...... .. 40

13. Abbreviated Data Dictionary Entry Format for Data Element ............... 42

14. Revised IDEFo Activity Essential Data Model ......................... 44

15. Revised IDEFO Data Element Essential Data Model ...................... 45

16. Revised IDEFo Drawing Model (Entities and Attributez) .................. 48

17. Revised IDEF0 Drawing Model (Entities and Relationships) ................ 49

18. Revised IDEFO Drawing Model (Classes) ............................. 50

19. IDEFo Drawing Model Illustration ................................. 51

20. Revised Data Dictionary Entry Format for Activity ...................... 54

21. Revised Data Dictionary Entry Format for Data Element .................. 55

22. Graph Representation of IDEFo Diagram for 'Market Floppies' ............ .. 62

23. Object Diagram Depicting -reliminary Essential Subsystem Design ........... 80

24. Essential Subsystem Detailed Design ................................ 85

25. Essential'Subsystem Top Level Module Diagram ........................ 38

viii



Figure Page

26. SAtool II Overall Architecture .. .. .. .. .. .. .. . .. .. . .. .. . .. ..... 104

27. Module Diagram Notation. .. .. .. .. .. .. . .. .. . .. .. . .. .. . .. .. 115

28. Essential Subsystem Top Level Module Diagram .. .. .. .. .. .. .. .. . .. .. 118

29. Module '.)i,- ram for Menu-1O.. .. .. .. .. .. .. . .. .. . .. .. . .. . ... 119

30. Module' Diagram for EssentialO.. .. .. .. .. .. . .. .. . .. .. . .. .. .. 120

31. Module Diagram for Olips..Working..Memory.Jnterface .. .. .. .. .. .. .. .. .. 121

32. Module Diagram for Essential..Fact..Utilities. .. .. .. .. .. .. .. .. .. . .. .. 122

33. Module Diagram for Activity-Manager. .. .. .. .. .. .. . .. .. . .. .. . .. 123

34. Module Diagram for Data..Element..Manager. .. .. .. .. .. .. .. . .. .. . .. 124

35. Module Diagram for ICOM..Relation..Manager .. .. .. .. .. .. .. . .. .. . .. 125

36. Module Diagram for Historical-Activity..Manager. .. .. .. .. .. .. .. .. ..... 126

37. Module Diagram for Calls-.Relation..Manager .. .. .. .. .. .. .. .. . .. ..... 127

38. Module Diagram for Consists-Of..Relation.Manager .. .. .. .. .. .. .. . .. .. 128

39. Module Diagram for Project..Manager and Environment-Types .. .. .. .. .. .... 129

40. A-0 Diagram for 'Market Floppies'. .. .. .. .. .. .. .. .. .. .. .. . .. ..... 145

41. AO Diagram for 'Market Floppies'.. .. .. .. .. .. .. .. .. .. . .. .. . .. .. 148

ix



List of Tables

Tz.ole Page

1. Description of Components in the Essential Data Model ................... 46

2. Objects Classes and Attributes Based on the Essential Data Model ........... 67

3. ICOM Relation Class Instances for Data Element 'floppies' ............... ... 70

4. Greatest Time Complexity Per Package ............................. 100

5. Order-Of Variables ........................................... 100

6. Greatest Time Complexity Per Package ............................. 101

x



AFIT/GCS/ENG/90D-07

Abstract

This iwmseg%*vn develops and implements an Ada based object oriented design (OOD) of
5 0

the IDE Essential Data Model called the Essential Subsystem, which includes an Ada based

expert system for IDE--model syntax checking. IDEF, is a graphic approach to system descrip-

tion developed by SofTech, Inc. for the U.S. Air Force Program for Integrated ComputerAided

Manufacturing (ICAM) and is a subset of the Structured Analysis (SA) language (30, 36). The
sb 0 f-b 0

IDEF6 Essential Data, Model is an entity-relationship (E-R) model of the IDEF/ language and
% 6

represents the fundamental (essential) information of an IDEFk model. The Essential Subsystem

is so named because of its intended use as a subsystem for integration with the Ada based, IDEF/

CASE tool, SAtool IT, that is under concurrent development Z4e)f.The deyelopment of SAtool II

is part of ongoing research at the Air Force Institute of Technology (AFIT), with the Strategic
J b a

Defense Initiative Organization (SDIO), on the use of IDEFb as a software requirements modeling

methodology.

The IDEF0 Essential Data Model and its corresponding data dictionary representation were

created during an earlier AFIT research effort and are revised as part of the requirements analysis

phase of this investigation. The E-R constructs of the IDEFO Essential Data Model are then mapped

into objects in an OOD. This OOD is then augmented with the necessary objects for storing and

retrieving the state of IDEFO models. The design of the Essential Subsystem is completed by

modeling the interface to the Ada expert system as another object in the OOD. The OOD is then

implemented in Ada, including the expert system which is implemented using CLIPS/Ada (an

Ada version of CLIPS). Thus, the feasibility of Ada and object oriented design techniques in the

development of CASE tools and the use of Ada in expert systems is demonstrated.

xi



The results of this investigation provide the foundation for future research into syntactical

validation, automatic generation, and application specific expert modeling of IDEFo models as well

as providing a subsystem for integration with SAtool II.

xii



AN OBJECT ORIENTED DESIGN AND IMPLEMENTATION

OF THE IDEFo ESSENTIAL DATA MODEL

USING ADA AND AN ADA BASED EXPERT SYSTEM

I. INTRODUCTION

General Issues

Steadily rising Department of Defense (DOD) software development and maintenance costs

have forced the DOD to look for cost reduction techniques in the software development life cycle.

Two DOD mandates on the use of the programming language Ada in software development projects

have been used to combat the problem (12, 13). The integration of Computer Aided Software

Engineering (CASE) tools with expert systems has been found to be another method for improving

software development life cycle efficiency and thus lowering costs (29:114). Therefore, the Air Force

can probably reduce its software development and maintenance costs by research and subsequent

implementation of these integrated tools. Furthermore, in addition to making integration easier,

even greater savings may be realized if DOD mandates are followed, and CASE tools and expert

systems are implemented in Ada.

This research covers two major areas: the development and implementation of an Object

Oriented Design (OOD) for an Ada based CASE tool, and the development of an Ada based expert

system for integration with that CASE tool. The preceding statement of the problem is both broad

and incomplete but is restated more clearly after some additional background to the problem is

provided.



Background

Before examining the foundation for this investigation, some terms must be defined. These

terms provide background information that is necessary to correctly interpret prior research efforts.

Computer Aided Software Engineering (CASE). Prior to the late 1970s, the most common

method for representing user requirements for system development was narrative English (43:123).

These requirements exhibited several undesirable characteristics (43:123-124):

* They were monolithic.

" They were redundant.

" They were ambiguous.

" They were difficult to maintain.

The recognized need for an improved methodology led to the gradual formalization of earlier meth-

ods into methods that were graphic, partitioned, and minimally redundant (43:124-125). Early

formalized methods included Data Flow Diagrams (DFDs), Entity-Relationship (E-R) Diagrams,

DeMarco Data Structure Diagrams, Jackson Data Structure Diagrams, and Structured Analysis

(SA) (36) (43:299-300). However, without automated tools to draw and validate the graphical

models, the process of developing and maintaining the models sometimes became overwhelming,

especially for systems whose requirements constantly changed. Naturally, this spurred research and

development of a class of products known as Computer Aided Software Engineering (CASE) tools

which automated the drawing and validation process. Therefore, by the middle 1980s, a CASE

industry developed, offering several dozens of automated tools (43:128,464).

Structured Analysis (SA). A similar yet alternative graphical modeling method to the DFD

is SA developed by Ross (36) (43:299). According to Ross, the SA technique produces:

2



a hierarchically organized structure of separate diagrams, each of which exposes only a
limited part of the subject to view, so that even very complex subjects can be under-
stood. The structured collection of diagrams is called a SA Model. (36:17)

SA permits requirements and high-level design to be modeled in one of two ways: data

decomposition or activity (process) decomposition (36:19). SA is the basis for the development of

the Structured Analysis Design Technique (SADT 1 ) by Sofl'ech, Inc. The SADT is in wide use

in Europe, the Far East, and U.S. aerospace manufacturing (28:2). The S,.DT is described in the

book SADT: Structured Analysis and Design Technique by Marca and McGowan 2 (28).

IDEFo. IDEF0 is a requirements modeling technique developed by SofI'ech for the U.S. Air

Force program for Integrated Computer-Aided Manufacturing (ICAM) (30). In fact, IDEF0 stands

for ICAM Definition Method Zero. IDEF0 defines a subset of SA that omits the data decomposition

and only permits requirements to be functionally modeled. The purpose of IDEFO is the "represen-

tation of the functions of a manufacturing system or environment" (30:1-1). For example, IDEFo

is used to "standardize the description of aerospace manufacturing across government contractors"

(28:133). However, IDEF0 can be used not only to describe existing systems but also systems not

yet developed. Thus, IDEFO can be used as a graphical language for modeling system requirements,

including software systems, and it is in this context that it is discussed in this research.

Data Dictionary. A data dictionary is a modeling technique that usually accompanies one

of the graphical modeling techniques. Its purpose is reflected by its name - providing a dictionary

of the data. It usually consists of a list of data item names, and accompanying each name is a

description. Names that represent composite objects are normally accompanied by a list of the

data items of which it is composed (39:82-83).

1SADT is a registered trademark of SofTech, Inc.
2The description of SADT in this text is verysimilar to the IDEFO subset of SA.

3



SAtool. During the past several years, AFIT has been actively involved in develophig a CASE

tool for assisting the software engineer in the requirements phase of the software development life

cycle. Specifically, a 1987 MS Thesis by Steven Johnson developed the CASE tool called SAtool,

which was written in the C programming language and developed for the SUN-3 wrkstntio.a (19).

SAtool's graphical language is based on IDEFO which, in turn, is based on the SADT. SAtool

allows the user to perform requirements analysis by developing IDEF0 diagrams and associated

data dictionaries (19:6-1).

Expert Systems. In the late 60s and early 70s, expert systems became recognized as a separate

field of study within the larger field of Artificial Intelligence (9:157). Expert systems are, in fact,

computer programs. However, they exhibit several features which together distinguish them from

conventional programs (9:151):

* They reason with domain-specific knowledge.

" They use domain-specific algorithms.

" They perform well in the context of a specific problem area.

" They possess an "explanation" facility, which permits the output of both the knowledge base

(i.e., the domain-specific knowledge) and the logical reasoning process (i.e., the search process)

in human readable terms.

" They possess a "knowledge acquisition" facility, which permits greater flexibility in modifying

the domain-specific knowledge.

One of the fundamental design differences between expert systems and conventional programs

of today is the separation of the domain-specific knowledge from the program that reasons with

the knowledge (9:161). Thus, the design of an expert system typically consists of a knowledge base

component (the domain-specific knowledge) and an inference engine component (the reasoning or

search programs).

4



Ezpert System Tools. An expert system tool is any computer language or programming sys-

tem that supports the eliciting and encoding of domain knowledge and provides one or more in-

ference techniques to apply the knowledge in order to solve the problem at hand (9:175-176). For

example, the programming language C is not an expert system tool, because it does not include a

"buil-in" irference technique. However, CLIPS (C Language Integrated Production System) is an

zxpaart System tool, because it includes an inference engine and a knowledge acquisition methodol-

ogY.

Additional Background

The Air Force Institute of Technology, Department of Electrical and Computer Engineering

(AFIT/ENG), has sponsored continuing MS thesis research on the integration of SAtool with an

expert system. The purpose of integrating an expert system with SAtcol is to provide syntax

checking of the IDEF0 diagram that is created by SAtool. The expert system thus frees the

developer from the tedious and time consuming task of validating that his or her IDEF0 diagram

is free of IDEF0 language violations.

In 1988, the MS thesis work of Jung began the process of integrating SAtool with an expert

system. by. tarting with a small prototype (20). SAtool is modified to accommodate the expert

system by adding an option to the SAtool user interface which translates the structural represen-

tation of the IDEF0 diagram into a file of expert system facts. This fact file is then transferred

from the SUN-3 to a Z-248 microcomputer where it becomes part of the knowledge base for an

expert system. The expert system is written in Prolog-1 and consists of rules defining the pioper

representation of an IDEF0 diagram (20:4-2-4-4). Although the expert system is successful in

performing the syntax validation of the IDEF0 diagram, the rules only check a limited number of

'E FQ ieatures. In addition, full integration with SAtool is not achieved, since the fact file must

e- t sferaed to a separate iomputer, the Z-248.

5



In 1990, the MS-thesis work of Kim continued research on the integration of an expert-system

with SAtool (24). The rule base of the expert system is extcnded to include rules for several

additional features of the IDEF0 language. The need for the separate microcomputer to run the

expert system is also eliminated. The expert system is implemented in Quintus Prolog on the

SUN-3 - the same hardware platform as SAtool. However, fully transparent integration is still not

achieved due to software compatibility problems between the C language and the Quintus version

of Prolog (24:6-2). The entire process of IDEFO diagram creation, editing, and error checking is

performed on the SUN-3, but the user is required to run two separate processes: one for SAtool

and one for Quintus Prolog.

Concurrent with the MS thesis work of Jung and Kim was the research of Neclon Smith

(38). The development of an Ada based version of SAtool called SAtool II in an X-Windows

environment is the focus for the research. The requirements document used is an abstract data

model of thc IDEFO language. The abstract data model consists of two parts: an essential data

model and a drawing data model. The research goal is to develop an object based Ada CASE tool

(SAtool II) using the abstract data model as the requirements document (38:4-1). The development

and Implementation of an object oriented design (OOD) in Ada for the essential data model is

achieved, but an OOD is neither designed nor implemented for the drawing data model (38:6-1).

Yukthermore, the GOD for the essentiai data model is considered inadequate because of its poor

design and implementation characteristics.

Concurrent with this thesis investigation is the MS thesis research of Jay Tevis (40). Tevis

is to implement SAtool II in an X-Windows environment. To that end, the research concentrates

on the design and implementation of an OOD for both the drawing data model and a graphical

user interface. Therefore, to get a complete picture of the creation of the CASE tool SAtool II, it

is necessary to refer to (40) as well as this research.

6



Problem Statement

An Ada based version of SAtool (SAtool II) is still required to demonstrate the feasibility

of the use of Ada and object oriented design techniques in the development of CASE tools. The

development and integration of an Ada based expert system with SAtool II to perform syntactical

checks of IDEF0 models is also required to demonstrate the feasibility of using Ada in expert system

development for application in the software development process.

For this research, the problem to be solved is modeled as the development of a subsystem

that will eventually be integrated with SAtool III. This subsystem consists of two parts which must

be integrated together: an essential deta model component and an expert system component.

Assumptions

In order to constrain the scope of the investigation, several assumptions were made at the

outset of this research.

1. One or more Ada based expert system tools is available for evaluation.

2. Concurrent research work with the drawing data model and related SAtool II implementation

issues (40) must proceed at a pace that does not hinder this research.

3. Users and/or researchers planning to utilize this work, must be familiar with the concepts of

modeling software requirements using IDEF0 , SA, or SADT.

Standards

Code and documentation developed for this thesis adhere to AFIT's System Development

Documentation Guidelines and Standards (Draft # 4) (16) whenever possible.

3 The other components necessary for implementation of the tool are developed by Tevis (40).

7



Research Approach

This investigation is performed in several phases. The following paragraphs explain each of

the phases.

In phase one of this research, a prototype that demonstrates the feasibility of integrating a

client Ada program with an Ada based expert system is performed. A transparent integration is

the prime concern. The Ada expert system chosen for this prototype is an Ada version of CLIPS

(CLIPS/Ada). It is belected because of its immediate availability and its satisfaction of the expert

system requirements specification.

The second phase involves a review of the requirements for SAtool II and the expert system.

The SAtool II requirements include the IDEF0 Essential Data Model and the corresponding data

dictionary formats. Modifications to the requirements are made where ixconsistencies or inadequa-

cies are discovered.

In the third phase, an OOD for the subsystem is developed. The objects from the essen-

tial data model are identified by developing and applying a mapping technique between Entity-

Relationship (E-R) Models and objects in an object oriented design. Additional objects in the

OOD are derived from other SAtool II requirements and the expert system requirements.

The fourth phase concerns the actual implementation of the OOD for the subsystem. This

includes the development of several utility programs to translate the IDEF0 information contained

in essential data model data structures (i.e., IDEF0 diagram information) into facts. These facts

are suitable for storage in either the working memory of the expert system or in an ASCII file for

later retrieval.

At this point, it should be noted that phases two, three and four are reaccomplishments of

a significant portion of earlier research (38). Unfortunately, both the object oriented design and

implementation of the earlier research are considered to have design and implementation errors

which render them unsuitable for incorporation into thiL research.

8



The fifth phase involves the creation of the Ada expert system to perform IDEF0 syntax

checking. Actually, only the development of the rule base remains, because CLIPS/Ada includes

an inference engine, and the facts are obtained via the result5 of the foi th rhase. Thus, a set of

IDEFO syntax rules are developed.

The final phase involves the integration of the subsystem with the rest of SAtool II that is

under concurrent development (40).

Equipment

The target environment for SAtool II development and implementation is the SUN work-

station running a version of Berkeley Unix. Several workstations are readily available within the

Department of Electrical and Computer Engineering to accomplish this research. The SUN is the

chosen platform, because it is the most readily available workstation with the required Ada com-

piler and X-Windows capability within the department. However, alternative hardware platforms

are possible if they support both Ada and X-Windows. It should be noted that the subsystem

created in this research contains no "hooks" to X-Windows and therefore should be able to execute

on any machine with a validated Ada compiler and sufficient memory.

Scope and Limitations

This investigation is limited to th. areas described below:

1. A joint review of the SAtool II requirements (40) which does not include a validation of those

requirements.

2. The development and implementation of an Ada based OOD for the essential data model.

3. The development and-irnpiementation of an Ada based expert system to perform syntactical

checks of ID,1F0 models.

9



4. The integration of the OOD for the essential data model and the expert system into a single

subsystem.

5. The development of one or more subprograms within the subsystem to translate information

stored in the essential data model data structures into facts suitable for loading into the

working memory of an expert system or for storing into an ASCII file.

6. The integration of the subsystem with SAtool II.

Sequence of Presentation

This thesis is organized into six chapters. Chapter Two presents a short introduction to the

IDEF0 lang age, AFIT's work with IDEFO, mapping E-R models to an OOD, expert systems, and

the integration of expert systems with CASE tools.

The third chapter presents a review of the requirements for the subsystem. Specifically, the

essential data model, the data dictionaries, and the expert system requirements are reviewed.

The fourth chapter presents the object oriented design of the subsystem, and chapter five

presents information concerning the implementation, testing, and integration of the subsystem

with SAtool II.

Finally, the sixth chapter presents a summary of the investigation and some conclusions and

recommendations.

Readership

This research is intended for those readers with interests in the use of Ada, expert systems,

entity-relationship diagrams, and object oriented design techniques in the software development

process. Furthermore, readers with interest in CASE, SA, SADT, or IDEF0 in software require-

ments modeling should consider examining this research as well.

10



II. LITERATURE REVIEW

Introduction

The objective of this research investigation is to create a subsystem for the CASE tool

SAtool II. A major part of the subsystem is the development and implementation of an OOD for the

essential data model portion of the IDEFO abstract data model. Another part of the subsystem is

the development and implemeyttation of an Ada based expert system to perform syntactical checks

of the IDEFO models created by SAtool II. The subsystem is then to be integrated with SAtool II.

Since the IDEF0 language (30) is implemented by SAtool II, an overview of the language

is presented first. Some -tiodifications to the IDEF0 language made by AFIT (16, 15), and im-

plemented by SAtool II, aa,. pj-esented next. An abstract data model of the IDEF0 language (3)

is then presented. Because the abstract data model is used as a basis for deriving a mapping

technique to objects in an OOD, information on the mapping of E-R constructs to objects in an

OOD is also included. Finally, both expert systems (27) and their integration with CASE tools

(20, 24, 38, 41, 42) are presented, since the OOD for the essential data model must be integrated

with an expert system.

IDEFo

As discussed in Chapter One, IDEF0 is a graphical language whose purpose is the modeling

of manufacturing systems, but it is also used to model software system requirements. An IDEFo

model consists of several constructs which are all cross-referenced to each other (30:3-1):

1. diagrams (composed of boxes, arrows, and text)

2. texts (the facing-page text, for example)

3. glossary (performing a function similar to a data dictionary)

11



An IDEFO model of software system requirements is constructed by starting with an A-O

diagram that consists of a single box and a number of arrows. This diagram is a high level abstract

view of the entire software system. In fact, it is conceptually similar to the context diagram which

is part of the DFD modeling technique (43:339). Since the A-0 diagram lacks the necessary detail

to describe the entire system, it must be decomposed into lower level diagrams forming a hierarchy,

where each lower level in the hierarchy reveals greater detail. Therefore, each diagram in the model,

with the exception of the A-0 diagram, is essentially a decomposition of a box in a higher level

diagram. The box in the higher level diagram is appropriately called the parent box of the diagram.

Figure 1 illustrates the hierarchical structure of an IDEFO model.

Within an individual diagram, a box represents an activity the system performs, whereas an

arrow represents a thing or data that is processed by the system. Arrows in IDEF0 , unlike arrows

in DFDs, do not represent flow or sequence but represent constraints (30:3-1). The four types of

arrows used by IDEF0 are as follows:

1. An input arrow enters the left side of a box and represents input data that may be needed in

order for that activity represented by the box to be performed.

2. A control arrow erters the top of a box and represents control information that determines

how an activity is performed.

3. An output arrow exits from the right side of a box and represents data that is output by the

activity.

4. A mechanism arrow enters the bottom of a box and represents either a person or device used

to carry out the activity.

Arrows, however, are not as simple as the above definitions imply. A special type of mechanism

arrow that exits from the bottom of a box is named a call. The call arrow indicates that the

function performed by the activity can be found in a decomposition in another IDEFO model. In

12



details

AO diagram

As diagram

A32 diagram

Based on (36:18)

Figure 1. IDEF0 Structured Decomposition

fact, a call arrow is the only arrow which does not represent a thing or data. Furthermore, each

and every box in an IDEFO diagram must have at least one control arrow and one output arrow.

No restrictions exist on the number of input or mechanism arrows permitted. The IDEFo manual

provides additional insight on the distinction between input and control arrows:

The assumption is that "an arrow is a control unless it obviously serves only as an
input" (30:3-4).

13



AUTHOR: Terry Kitchen DATE:10/01/901RE=ADER:,

PROJECT: Market Floo ies IVER:JO°  IDATE:

company I udget
p ans

quality standards
, [csumer budget

~Market I rofit

=cash #_Floppies

labor force

machines

ACTIVITY NO TITLE: Market Floppies NUMBER:
A-0

Figure 2. Sample IDEF0 Diagram

Figure 2 illustrates a single IDEFo diagram that represents a contrived project for a company

that markets floppy disks. In this case, it is the A-0 diagram, "Market Floppies". The arrows on

the diagram fall into the following categories: 'cash' and 'raw materials' are input -orrows; 'company

budget', 'consumer budget', 'quality standards', and 'plans' are control arrows; 'profit' is an output

arrow; and 'labor force' and 'machines' are mechanism arrows. For a more detailed account of the

IDEFo modeling technique, refer to the IDEFo manual (30).

AFT and IDEFo

IDEFo Modifications. AFIT/ENG has adopted IDEFO as its requirements analysis method-

ology and, in doing so, has made se, cral modifications to the language (15, 16). The following list

highlights some of the modifications:

14



1. The IDEF 0 language requires an accompanying glossary with each model, but AFIT has

extended the IDEF0 language to include a data dictionary which, -n effect, replaces the

glossary (3, 16).

2. The IDEF0 language states that an arrow represents some data or a thing, but AFIT uses

the term data element instead.

3. The IDEFo language requires that each diagram (except the A-0 diagram) contain between

three and six boxes, but AFIT has not adopted this requirement.

AFIT requires a data dictionary entry be made for each activity and data element that appears

in an IDEFo model (15, 16). By replacing the IDEFo glossary of unspecified format with data

dictionary entries of specific format, the syntactical precision of the IDEF0 model is increased and

syntactical ambiguities are reduced (3:641). Figure 3 illustrates the required data dictionary entry

format for an activity, and Figure 4 illustrates the required data dictionary entry format for a data

element. The 'S', 'M' an 'G' classifications that precede the fields in the data dictionary entry

are based on the notation in (11:109) and refer to words single-line field, multiple-line field, and

group-field respectively:

" (S) means that there is only one field of this type in the entry, and it appears on a single line.

" (M) means that there is only one field of this type in the entry, but the field consists of

multiple lines.

" (G) means two or more fields are grouped together and multiple groups are allowed. However,

each group member is still a single field that can only appear on a single line.

It should be noted that the 'M' field classification is inappropriately applied to some fields.

For example, the DESCRIPTION field of either the activity or data element data dictionary entry

is a single field that can consist of multiple lines, so the 'M' classification is correct. However,

15



(S) NAME: (activity name) C25
(S) TYPE: (defaults to ACTIVITY) N/A
(S) PROJECT: (project name) C12
(S) NUMBER: (Node number of this activity) C20
(M) DESCRIPTION: (text description) C60
(M) INPUTS: (data element name) C25
(M) OUTPUTS: (data element name) C25
(M) CONTROLS: (data element name) C25
(M) MECHANISMS: (data element name) C25
(G) ALIASES: (an activity name that's an alias) C25

COMMENT: (why the alias is needed) C60
(S) PARENT ACTIVITY: (activity name of parent) C25
(S) REFERENCE: (cite a reference to the activity) C60
(S) REF TYPE: (the type of the reference) C25
(S) VERSION: (version of this entry) C10
(S) VERSION CHANGES: (what's different about this version) C60
(S) DATE: (mm/ dd/yy of this entry) C8
(S) AUTHOR: (author's name) C20

based on (16:14) and (11:112)

Figure 3. Data Dictionary Entry Format for Activity

the INPUTS field for the activity data dictionary entry is actually multiple fields, where each field

appears on a different line. This classification is not implied by 'M'.

An Abstract Data Model for IDEFo. Over the past several years AFIT has developed many

CASE tools to assist students in the software development process. When developing software of any

kind (including CASE tools), ambiguities in the requirements will likely lead to user dissatisfaction.

A clear, concise, and "complete" statement of the requirements is essential. Therefore, one could

say a "formal model" of the requirements is necessary.

No formal model existed for the IDEF0 language, and the lack of such a model increased the

difficulty in developing CASE tools designed to manipulate the IDEF0 language. Therefore, in 1989

a group of AFIT students and faculty developed an abstract data model of the IDEFo language (3).

The modeling technique chosen to construct the abstract data model is an extended version

of the entity-relationship (E-R) modeling technique (10). Figure 5 is a sample of the technique

16



(S) NAME: (data element name) C25
(S) TYPE: (defaults to DATA ELEMENT) N/A
(S) PROJECT: (project name) C12
(M) DESCRIPTION: (text description) C60
(S) DATA TYPE: (the type of data, if known) C15
(S) MIN VALUE: (minimum data value, if known) C15
(S) MAX VALUE: (maximum data value, if known) C15
(S) RANGE: (range of values, if applicable) C60
(M) VALUES: (allowable values, if appropriate) C15
(S) PART OF: (parent data element name) C25
(M) COMPOSITION: (subcomponent data element names) C25
(G) ALIASES: (an alias data element name) C25

WHERE USED: (where does the alias occur?) C60
COMMENT: (why the alias is needed) C60

(M) SOURCES: (activity name) C25
DESTINATIONS: N/A

(M)INPUT: (activity(s) where it is an input) C25
(M)CONTROL: (activity(s) where it is a control) C25

(S) REFERENCE: (cite a reference : the data element) C60
(S) REF TYPE: (the type of the reference) -C25
(S) "ERSION: (version of this data element) C10
(S VERSION CHANGES: (what's different about this version) C60
(S) DATE: (mm/dd/yy of this entry) C8
(S) AUTHOR: (author's name) C20

based on (16:16) and (11:114)

Figure 4. Data Dictionary Entry Format for Data Element

17



suplie O.InS parts

(31:37)

Figure 5. Modified Entity Relationship Diagram

applied to a contrived example. The E-R model itself consists of rectangles (entities), ellipses

(attributes), diamonds (relationships between entities), and lines (links). The extensions include

either a horizontal or vertical line through one side of the diamond indicating from which direction

the relationship should be read. The cardinality of the relationships is added to both sides of the

diamond. Finally, an asterisk is assigned to the attribute which is the primary key.

The abstract data model consists of two parts: czn essential data model and a drawing data

model (3:2). The essential data model contains the information fundamental (essential) to the

IDEF0 model. On the other hand, the drawing data model contains information pertaining to the

graphical constructs of a diagram.

The basic premise in our approach to modeling IDEFo syntax is that a given IDEFo
decomposition is actually just a graphic representation of a more fundamental underly-
ing model, which could equally well be represented by a number of alternate diagrams
without altering the analysts fundamental model. These alternatives could vary simply

by one activity box being in a slightly different position, or by one using an IDEF0
shorthand notation, such as a double headed arrow or a footnote. To support this ap-
proach, then, two models were developed: the essential model, which is the underlying
fundamental model, and the drawing mode! which defines one of the possibly many
graphical representations of the essential model (3:642).

For example, if a model contains an activity called compile, the box representing compile may have

18



many different physical locations (coordinates) on a diagram, and yet it would still represent the

same activity (compile). Therefore, the coordinates of the box, like other graphical characteristics

of a diagram, are not considered essential to the fundamental IDEFo model and are placed in the

drawing data model.

The primary entities of the essential data model thus become activities and data elements,

while the primary entities in the drawing model are their graphical counterparts - boxes and line

segments. Because of the size and complexity of both the essential and drawing data models,

each is split into two parts. Figure 6 illustrates the part of the essential data model that details

an activity. Figure 7 illustrates the part of the essential data model that details a data element.

TFigures 8 and 9 illustrate the parts of the drawing data models for an activity (box) and data

element (line segment) respectively.

19



~project

....... .,. ....... .:r i , nam
elementdenm

........... .......

O: calls Imca

as don analyst

~defined

ref elsewhere

(3:643)

Figure 6. IDEPo Activity Essential Data Model

20



project 1: e

dctriptio by.........

defineds

elsewhere

Figure ~ ~ ~~ i 7at typeat lmetEsnta at oe

..... .. ...... 21



x y

..................

visible DRE
activity 

is
represente

by
........... ........

I:m

drawn on
c-number

is
decomposed cont ins

on

is

note

Yi squiggle

x2

y2

contents 4
0

y3.................. x4

textdefined
picture

elsewhere
...................

is

footnote

(3:643)

Figure 8. IDEFo Activity Drawing Data Model

22



tsement iVI

onn ........

Fiur 9 sIeg0Dt lment stwig at o

ro23I



Mapping E-R Model Constructs to Objects in an OOD

One of the objectives of this thesis investigation is to perform a mapping from an E-R model

to an OOD. OOD, at this time, is not a "complete" software life cycle methodology. In fact, it is

mostly limited to the design and coding phases of the software life cycle (6:47). Thus, the soft-

wa'e system analysis phase is commonly accomplished by employing one or more of the Yourdon

Structured Method I (YSM) 2.0 2 structured analysis graphical modeling techniques such as DFDs,

E-R models, and State Transition Diagrams (STDs) (43). Other software system analysis modeling

techniques for the systems analysis phase are utilized and defined in the literature but are invari-

ably derivatives, relatives or combinations of the YSM 2.0 techniques. Once the software systems

analysis is accomplished, various techniques are then employed to construct an OOD from these

models. In this research, however, the mapping process from E-R models constructs to objects in

an object oriented design is of interest and is examined more closely. In particular, the mapping of

relationships to objects is emphasized.

The Keystone System Design Methodology. The Keystone System Design Methodology devel-

oped by Eric Kiem employs E-R models in performing a mapping to an OOD (23). The justification

for using the E-R model follows:

If E-R modeling of data for a database produces data structures with minimum dupli-
cation and minimum coupling, then an object oriented packaging schema resulting from
the same model will exhibit the same characteristics - that is, a system developed using
an E-R model will exhibit minimum duplication of data, and minimum inter-package
coupling (23:102).

The methodology not only considers E-R model entities as objects, but also considers relationships

between objects as objects themselves (23:102). Each entity and each relationship thus becomes

an object in the OOD. The objects that model the relationships are the only objects which have

IYourdon Structured Method is now a trademark of Yourdon, Inc (8).
2 The various YSMs are now explicitly numbered (8).

24



visibility to (i.e., are coupled to) other objects in the final OOD. Their visibility is restricted to

the objects which they relate. The objects which model the entities are not coupled and thus are

considered as candidates for reuse (23:105).

Object Oriented Systems Analysis Method. The Object-Oriented Systems Analysis Method

results in the creation of an Information Model of a system. The graphical representation of the

Information Model is an Information Structure Diagram which is partly based on the E-R model

developed by Chen (37:77). The Information Structure Diagram syntax refers to entities as objects

and refers to relationships as either correlation tables or associative objects (37:79).

Correlation tables and associative objects are very similar. Correlation tables are modeled

as relations that only contain the primary key fields of the objects (i.e., the entity relations) that

they relate. Associative objects are the same as correlation tables except they contain one or more

attribute fields in addition to the primary key fields.

The procedure for mapping objects and relationships in an Information Structure Diagram

to objects in an OOD is not explicitly stated. However, the methodology requires Object Spec-

ification Document be produced which provides an object specification for "every object in the

model" (37:83). The methodology requires that associative objects be included in the specification,

whereas correlation tables are not included(37:83). Thus, it appears that correlation tables are not

considered as objects.

An Earlier Mapping Methodology for SAtool II. Previous thesis work used the IDEFo Ab-

stract Data Model as the basis for devising a mapping methodology from an F-R diagram to objects

in an OOD (38). The following methodology is used to identify the objects for essential data model

OOD:

25



1. Map all entities in an ER diagram into objects.

2. Combine a key object with a related object by defining the relationship between
the two as an attribute of the main object. Thus, only one operation will be defined
for the given relationship.

3. Map all relationships between two objects into two operations based on their two
semantic interpretations. Then assign each operation to the appropriate object.

4. Map all attributes of an entity to the object that represents the entity.

5. Map all attributes of a relationship to the object that contains an operation that
represents the relationship. (38:4-12 to 4-13)

Unfortunately, the implementation of this methodology leads to an OOD with only three

highly coupled objects: a project, an activity, and a data element.

Expert Systems

As stated in Chapter One, the primary components of an expert system (also referred to as

knowledge-based systems) are the inference engine and the knowledge base.

The paradigm of problem soiving which underlies all expert systems and AI programs in

general is search (9:160), and it is the purpose of the inference engine to employ one or more search

methods (or reasoning methods) to the knowledge in order to solve a problem.

There are several different knowledge representation schemes for representing information in

a knowledge base. These schemes fall into one of four categories (27:334):

1. Logical representation schemes. First order predicate calculus is the most common method.

2. Procedural representation schemes. The knowledge is represented as a set of instructions.

For example, the if... .then constructs of a rule-based system are typically used.

3. Network representation schemes. Examples include semantic networks, conceptual dependen-

cies, and conceptual graphs.

4. Structured representation schemes. Examples include scripts, frames, and objects.

26



The knowledge representation scheme of interest for this research is the procedural scheme, since

it is the scheme used by CLIPS/Ada (35:1).

The knowledge base of a rule-based expert system contains long-term static knowledge which

is represented by rules and also facts that are static, true propositions (17:924). Separate from the

knowledge base is a global or working memory which stores the case-specific data concerning the

particular problem to be solved. It is also used to store the short-term intermediate results (i.e.,

temporary assertions) during the expert system execution cycle (17:924). The working memory

can therefore be viewed as representing the state of the expert system problem solving process at

any given time during the execution cycle.

To illustrate how rules and facts can be represented in a rule-based expert system, an ex-

ample is provided using CLIPS/Ada. Suppose that the rule 'Any triangle is a polygon' and the

fact 'Figure I is a triangle' are to be represented as a CLIPS/Ada rule and a CLIPS/Ada fact

respectively. The fact that 'Figure 1 is a triangle' can be represented by a single line of text:

(triangle figurel)

The representation of the rule is slightly more complex. The first line simply gives the rule

a unique name. Any lines on the "left hand side" of the rule (prior to the arrow) constitute the

if part of the rule. Any lines on the "right hand side" of the rule (after the arrow) constitute the

then part of the rule.

(defrule polygon-checker

(triangle ?x)

(assert (polygon ?x)))

The inference engine of a rule-based expert system has three phases of execution which are

commonly called the recognize-act cycle (27:131):

1. The match phase compares the left hand side of rules to facts in the working memory and

determines which, if any, are eligible to fire (execute).

27



2. The conflict resolution phase decides which rule will fire next if more than one rule is eligible

to fire.

3. The act or fire phase executes the right side of the rule selected to fire. This step may or may

not affect the contents of working memory.

There are two common control methods to this cycle: backward chaining or forward chaining.

Backward chaining systems are considered "goal driven", because they fire rules and assert facts

only until one or more goals are satisfied. Forward chaining systems, on the other hand, are

considered "data driven", because they typically fire rules and assert facts until all the eligible

rules have been fired. For example, the inference engine of CLIPS employs a forward chaining

reasoning method (35:128). If a CLIPS knowledge base contained the aforementioned "polygon"

rule and the "triangle" fact, an execution of the CLIPS system would result in the addition of the

following fact to the working memory:

(polygon figurel)

This result is accomplished by the left hand side of the "polygon" rule matching the "triangle"

fact. Since there are no other rules eligible to fire, the inference engine directs the 'polygon-checker'

rule to fire which creates the new fact in the working memory by executing the "assert" command

contained in the right hand side of the rule.

Integration of Expert Systems with CASE Tools.

This section focuses on three examples related to the integration of CASE tools with expert

systems: one from government academia (i.e., AFIT), one from civilian academia, and one from

industry. The primary focus of the three projects reviewed will be in the area of expert assistancc

in the early phases of the software development life cycle (i.e., requirements analysis and design).

By examining projects developed from three different perspectives, the strengths and weah:nesses

of each project can be identified for future reference.

28



Most of the early expert systems started as research projects built on rtand alone machines

(29:111). Today, however, expert systems are built on a variety of software and hardware platforms.

Because of these various platforms, AFIT, academia, and industry have begun both theoretical and

actual development of systems that integrate CASE tools with expert systems. Each of the following

projects have been implemented with differing degrees of success.

SAtool with Syntax Validation. As previously discussed, Steven Johnson developed SAtool

for his MS thesis in 1987 (19). SAtool, though, is simply a graphical editor and provides no advice

or assistance to the user as the IDEFO diagrams are being drawn. In other words, the user of SAtool

could not determine if the finished diagram is consistent with the IDEFo graphical language except

by tedious and time consuming manual inspection.

In order to provide the user with expert assistance and hence increase the value of SAtool to

the software engineer, AFIT sponsored a MS thesis by Jung in 1988 (20). This research focused

on the prototype development of an IDEFO syntax (language) validation tool which is an expert

system to perform a syntax validation of the an IDEF0 diagram. The IDEF0 syntax is formalized

by converting the syntax to predicate logic facts. The research describes how both a box and an

arrow are described in predicate logic.

The graphical feature BOX is translated into the predicate BOX(x), which means: x
is a BOX. In the case of the ARROW, it is translated into the predicate ARROW(x),
which means: x is an ARROW (20:3-5).

There are two steps to the syntax validation tool (20:3-4). First, a C program is developed

called a translator to translate the IDEFo diagram features into a formal description that is 'read-

able' by the expert system. The expert system is a backward chaining expert system, BC33. BC3,

however, required facts to be represented as three-element lists of the form [Object, Attribute,

Value] which are normally referred to as OAV triples. The IDEFo diagram representation is stored

3 BC3 is a Prolog based backward chaining expert system shell developed by F. M. Brown.

29



in multiple C data structures, and the translator program creates a file of facts based on the

information in those structures (20:30-4 to 3-8).

The second and final step of the syntax validation tool is the syntax checker (20:3-4, 3-10).

The syntax checker's purpose is to check the IDEF0 diagram (now represented as OAV triples) for

errors. The syntax checker is, in essence, the expert system. It consists of the fact base (provided by

the translator program), a Prolog inference engine (BC3) to do the reasoning, and a set of IDEF0

syntax rules. Syntax rules such as "Each box must have a name" and "Each arrow must have

a label" are converted to if....then contructs in a form acceptable to BC3 (20:3-8). The syntax

checker, when executed, produces error messages (if applicable) for the designer to review and take

corrective action.

The research, however, is limited in scope. All the features of an IDEF0 diagram are not

addressed. Plus, a transparent integration of SAtool and the syntax validation tool is not achieved

(i.e., a manual step remained).

The follow-on research of Kim centered on resolving both the aforementioned integration

problem as well as expanding the syntactical ,.hecks that the expert system performed (24:1-2).

The number of IDEF0 syntactical features checked by the expert system are expanded (24:5-12 to 5-

13). To resolve the integration problem, an attempt is made to integrate SAtool with a Quintus

Prolog implementation of the syntax validator (the expert system). The "new" syntax validator

is simply the expert system shell BC3 with changes necessary fo:' it to run under Quintus Prolog.

Unfortunately, compatibility problems between Quintus Prolog and the C programming language

result in a failure to achieve a transparent integration of the expert system with SAtool (24:6-2).

Specification-Transformation Expert System (STES). At the University of Illinois, Tsai and

Ridge have developed the Specification-Transformation Expert System (STES) which is an expert

system that they have integrated with the CASE tool Teamwork developed by Cadre Technologies

(41:34). Teamwork is used to create DFDs. In addition, Teamwork runs on an Apollo workstation

30



platform and includes a built-in Access tool which allows users to access the underlying data

structures that contain the DFD description. In this case, a C++ program is written by Tsai and

Ridge to access the DFD description (41:34).

By implementing the STES in OPS5. which can also run on Apollo workstations, transparent

integration of Teamwork and STES is achieved.

After the requirements analysis phase of the software development life cycle is completed,

STES can be used in the next step - the design phase. STES assists the software engineer with

the design phase by transforming the DFD into a structure chart (41:28). The STES examines the

C++ representation of the DFDs, extracts the salient features, and converts them into production

rules (41:31). The STES then "applies inference to identify and transform the efferent, afferent,

and transformation-centered components of the dataflow diagram into a first-cut structure chart"

(41:3i).

Visible Analyst Workbench. Visible Analyst Workbench 4 is an IBM-PC based CASE tool

marketed by Visible Systems Corporation that contains rules to perform error checking of DFDs

(42). According to the product documentation, the CASE tool portion called Visible Analyst

allows the user the choice of two different sfyles in DFD conc;Lruction: the Yourdon/DeMarco

Method ' DFD or the Gane and Sarson Method DFD (42:30,32). Unlimited levels of DFD process

decomposition are also supported. Regardless of the style chosen, however, the rules portion of the

tool called Visible Rules can check the diagram for proper balancing, naming conventions, etc (42).

The Visible Rules are executed without leaving the DFD which means transparent integration

between the CASE tool portion and the "expert system" portion is achieved. Although the word

rules implies a rule-based expert system is used, the proprietary nature of the product does not

4Visible Analyst is a registered trademark of Visible Systems Corporation.
SThe correct reference should probably be YSM 1.0 (8).

31



permit the disclosure of whether the rules are implemented algorithmically or by an expert system

paradigm.

Summary

This chapter provides a review of several subject matter areas that directly relate to this

investigation. IDEFo and its AFIT modifications are reviewed, since the IDEF0 modeling technique

is implemented by SAtool II, which the subsystem created here is destined for integration with.

The abstract data model of the IDEF0 language as well as the data dictionary formats based

on the language are reviewed, because modified versions are used in this research as the primary

system requirements documents for the design phase.

Expert systems are reviewed because of the desire for SAtool II to perform syntactical vali-

dation of IDEFo models. In addition, inerest exists in the automatic generation of IDEF0 models

from only essential data model information. Also of interest is the issue of augmenting the knowl-

edge base of the expert system with application specific design knowledge of the system being

modeled.

Several examples concerning the integration of CASE tools with expert systems are also

reviewed, since this research calls for a similar integration. Clearly, all attempts at integration do

not succeed. To improve the chances of successful integration, information from successful projects

should be obtained and used as a foundation for further research. The compatibility of the CASE

tool and the expert system appears to be a key point to focus on when considering integration.

32



II. REQUIREMENTS ANALYSIS

Introduction

This chapter presents a review of the requirements for the subsystem that is to be integrated

with SAtool II. Presented are a revised IDEF0 Essential Data Model and a revised AFIT Data

Dictionary format. These two models are used in this research as the primary system requirements

for the design phase. An overview of the requirements specification and how this research fits

into the overall development of SAtool II are presented first. Next, the inconsistencies and the

inadequacies of both the IDEFo Essential Data Model and the AFIT Data Dictionary format are

identified. The revisions to the IDEFO Essential Data Model are then discussed, and a revised

model is presented. The revisions to the AFIT Data Dictionary formats are detailed and are

followed by revised formats. The revised IDEF0 Drawing Data Model from (40) is also included

to present a total picture of the revised IDEF0 Abstract Data Model. Finally, a discussion of the

expert system requirements is presented including justification for the selection of CLIPS/Ada as

the expert system tool.

Overview

The overall goal of both this research and (40) is to develop an Ada based CASE tool (SAtool

II) for the creation, editing, output, storing, and syntax checking of IDEF0 diagrams. Features for

editing and storing AFIT Data Dictionary entries are also desired. The resulting CASE tool would

then demonstrate fhe feasibility of Ada in a CASE tool environment.

In addition to formalizing the IDEF0 syn'- 'anguage, another stated purpose of the .DEFo

Abstract Data Model presented in Chapter Two is to provide a modcl for "the implementation of

an object-based Ada tool using this model" (3:643). Therefore, the design and implementation

of SAtool II is heavily based on that model. However, the abstract data model only models the

33



IDEFo syntax, and there are many other system requirements. Therefore, the following is a general

overview of the SAtool II system requirements specification:

1. The tool must be totally implemented in Ada.

2. The tool must have a graphical user interface (GUI).

3. The tool must be implemented on a workstation supporting X-Windows and Ada.

4. The tool must provide for the creation, editing, and output of IDEF0 diagrams (i.e., the

manipulation of IDEFO syntax).

5. The tool must provide a for the creation, editing, and output of the AFIT Data Dictionary

formats.

6. The tool must provide for the storing of the essential data model information of an IDEFo

model that is separate from the stored drawing data model information.

7. The tool must provide for the storing or automatic generation of the drawing data model

information (i.e., the diagrams) of an IDEF0 model that is separate from the stored essential

data model information.

8. The tool must be integrated with an Ada based expert system for the purpose of identifying

IDEF0 syntax and modeling errors.

9. The tool must allow for a user to terminate work on an IDEF0 model, leaving it in an

unfinished state. For example, creating an activity with no connecting data elements leaves

the IDEFo model in an incomplete state.

10. The tool must be developed using an object oriented design methodology in order to assess

its potential in the construction of an Ada based CASE tool.

Both this investigation and (40) must satisfy requirements 1, 4, 9, and 10. This investigation

also focuses on those requirements relative to the essential data model, the data dictionaries, and

34



the expert system (i.e., 5, 6, and 8). The concurrent research (40) focuses on those remaining

requirements related to the drawing data model, the IDEF0 diagrams, and the GUI (i.e., 2, 3, and

7). No specific requirements in terms of time or space are provided. It is recognized, however, that

the response time of a CASE tool is critical to its acceptance by the user community. Therefore,

efficiency in terms of time complexity is a factor in the design and implementation process.

A review of the requirements suggests that there are actually four subproblems to be solved

by this research.

1. The development and implementation of an object model to create, retrieve, and restore

IDEF0 Essential Data Model information (based on requirements 1, 4, 6, 9, and 10).

2. The development and implementation of a method to create, retrieve and output AFIT Data

Dictionary information (based on requirement 5).

3. The development and implementation of an interface to an Ada based expert system (based

on requirement 8).

4. The integration of the above into a single subsystem for eventual placement within SAtool II

(the primary requirement).

Henceforth, the term Essential Subsystem is used to refer to the single integrated subsystem

designed for solving these four subproblems.

Alternative design and implementation methods using relational and nested-relational databases

for representing the essential data model data and drawing data model information are explored

in (31) and further research is planned by AFIT in this area. The speed at which the information

can be stored and retrieved using this methodology is the primary barrier to its adoption.

'35



A Review of the Requirements Models

Since the requirements for the solutions to the first and second subproblems are illustrated

by the IDEFO Essential Data Model and the AFIT Data Dictionary formats respectively, a review

of these models is performed prior to beginning the object oriented design process.

Prior to the start of this research, both the IDEF0 Essential Data Model and the data

dictionary formats were considered to be "complete". However, in the course of reviewing the

essential model and the data dictionary formats, some inconsistencies between the two models and

inadequacies in the models are noted. Therefore, before beginning the OOD phase, revisions are

made to both models, and the new versions are presented.

The term inconsistent used in this context means contradictory. For example, a data dic-

tionary normally provides a link between a graphical representation of a system and a descriptive

representation of a system. Therefore, entities present in a graphical representation of a system

like an E-R model should have corresponding descriptive information in a data dictionary. Thus,

an entity in the graphical model without an entry in the data dictionary is inconsistent with the

modeling technique. Likewise, an entry in the data dictionary without a corresponding entity in

the E-R model is also considered inconsistent.

The term inadequate in this context means that some element of the model is present but

is lacking in necessary information. For example, a data dictionary entry should, at a minimum,

convey enough descriptive information about an entity or object of a system so that the entity or

object is accurately represented by the description. In fact, the data dictionary should convey ad-

ditional information that cannot be derived from its graphical counterpart. Thus, if the descriptive

information is inadequate, then the data dictionary entry is considered inadequate as well.

36



Inconsistencies in the IDEF0 Essential Data Model and Data Dictionary Format

By visual inspection of the essential model and the data dictionaries, several inconsistencies

are identified. Figures 3 and 4 clearly show the presence of an alias field for both the activity and

the data element data dictionary enties. Figure 7 contains an alias entity corresponding to its

data dictionary. However, an examination of Figure 6 reveals no corresponding entity for its alias

attribute in the data dictionary. This results in an inconsistency between the two models depicted

in Figures 3 and 6.

The second inconsistency is also discovered by visual inspection of the E-R models and the

data dictionaries. The IDEFO Activity Essential Data Mofdel in Figure 6 clearly shows the presence

of a historical activity entity. Its presence is consistent with the IDEF0 language which permits

activities to have a downward pointing mechanism arrow (known as a 'call') that refers to one

or more activities in the same or other projects (30:3-10). A visual examination of the activity

data dictionary in Figure 3, however, reveals no entry for historical activities, and thus, another

inconsistency is identified.

Not only are inconsistencies identified between the IDEF0 Activity Essential Data Model and

the activity data dictionary entry, but a greater inconsistency is discovered between the IDEFo

language and both the IDEFo Abstract Data Model and the AFIT Data Dictionary. Again, the

inconsistency pertains to the use of aliases. Neither the IDEFo language nor the IDEFO modeling

technique discussed in (30) make any reference to the use of aliases. Thus, an attempt to model a

nonexistent feature of the IDEFO language is made.

Inadequacies in the IDEF0 Essential Data Model and Data Dictionary Format

The inadequacies present in both the essential model and the data dictionary are difficult to

identify. In particular, inadequacies in the essential model are difficult to determine due to the

fact that it is an abstract graphical model of the IDEFo language. One cannot simply "plug"

37



the syntactic values of any specific IDEF0 model into a graphical E-R model because of its level of

abstraction. Therefore, the methodology developed for determining inadequacies involved modeling

IDEFo diagrams with data dictionaries. The following steps illustrate that methodology:

1. Create a set of IDEF0 diagrams that model a system.

2. For each activity and data element contained in the diagrams of the model, create a data

dictionary entry and fill in the corresponding values from the diagrams.

3. Engage a second person with no knowledge of the original IDEF0 model to try and recreate

the original IDEF0 model using only the data dictionaries.

4. A successful recreation of one of the equivalent drawing models means a failure in the search

for inadequacies; a failed recreation attempt means one or more inadequacies are present in

the data dictionary.

The last step in the methodology highlights a crucial theoretical aspect of the essential model

and its accompanying data dictionary. If the data dictionary correctly describes the entities and

relationships of the essential model, then for a given data dictionary that models an actual IDEFo

model, a human should be able to recreate one of the several equivalent IDEF0 models by only

examining the data dictionary. In other words, the human should be able to create one of the many

drawing models that represent the same underlying essential model. If the human is unsuccessful

in creating one diagram from an equivalent set of IDEFO diagrams, then inadequacy(s) must exist

in the data dictionary and/or the essential data model. The issue of whether a computer can

successfully recreate one or more of the drawing models from only essential model information is a

complexity issue that is not addressed in this research.

Using the methodology described above, two significant inadequacies are identified:

" The inability to correctly model multiple Source-Destination groupings.

* The inability to correctly model multiple decompositions of a data element.

38



AUTHOR: Terry Kitchen IDATE: 10/01 / 90READER:

PROJECT: Market Floppies IVER:A.0 " DATE: I I

company budget consum er budget

Floppies Store A

quality standards

Manufactur Sell in
W[F~ppie .T-Store B

labor force

machines

ACTIVITY NO: TITLE: Market Floppies NUMBER:
A0

Figure 10. IDEFo Diagram Illustrating Multiple Source-Destination Groupings

Multiple Source-Destination Groupings. Multiple Source-Destination groupings only occur

when the same data element appears in two different relationships within the same IDEFO diagram.

Figure 10 shows that the data element 'floppies' appears in two separate relationships within the

diagram 'Market Floppies'. In this example, 'floppies' actually has multiple source-destination

pairs.

Figure 11 is an abbreviated data element data dictionary entry for 'floppies' which illustrates

the inadequacy of the current data element data dictionary format in correctly modeling Figure 10.

In this case, the data dictionary entries for each of the four activities and even the parent

diagram provide no additional information as to whether floppies that are bought are resold to store

A or B. Likewise, are manufactured floppies sold in store A or B? The answer cannot be derived

39



NAME: Floppies
TYPE: Data Element
SOURCES: Buy Floppies

Manufacture Floppies
DESTINATIONS:

INPUT: Sell in Store A
Sell in Store B

CONTROL:

Figure 11. Abbreviated Data Dictionary Entry for Data Element 'Floppies'

NAME: Floppies
TYPE: Data Element
SOURCES: Buy Floppies
DESTINATIONS:

INPUT: Sell in Store A
CONTROL:

SOURCES: Manufacture Floppies
DESTINATIONS:

INPUT: Sell in Store B
CONTROL:

Figure 12. Revised Abbreviated Data Dictionary Entry for Data Element 'Floppies'

from data dictionary and/or the essential model. Note, however, that if an interpretation of the

IDEFo language disallows the same data element appearing more than once on the same diagram,

no changes to either of the models is required.

To correct the situation, the data dictionary must be able to distinguish between different

groupings or pairs of sources and destinations. Figure 12 illustrates a solution which mandates a

separate list of Sources and Destinations for each appearance of a data element. For instance, if

the data element 'floppies' also appeared once on another diagram associated with Figure 10, then

a total of three Source-Destination groupings would appear in Figure 12. With the revised format,

there is no doubt what the correct sources and destinations for 'floppies' are.

Multiple Decompositions of Data Elements. Multiple decompositions of a data element occur

when a given data element is decomposed into one set of subcomponents and then decomposed

40



into at least one other, but different, set of subcomponents within the same IDEF0 model. In

other words, unlike activities which can have only a single parent, a data element can have one or

more parents. This feature of the IDEFO language is overlooked by Morris in his description of the

'consists of' relationship in the essential data model of Figure 7.

This relationship shows that a pipe consists of at least two data elements and that a
data element can be contained within at most one pipe (31:43).

Since Morris played a key role in the development of the IDEF0 Abstract Data Model, and the

E-R models presented in (31) are identical to the ones presented in Chapter Two, it appears that

the intent of the E-R model is not to handle multiple decompositions of data elements. In fact, an

inadequacy in the IDEFO Abstract Data Model does exist, since an additional attribute is required

to track multiple decoinpositions.

The data element data dictionary format suffers from the same inadequacy as the data element

essential data model. Figure 13 shows an abbreviated version of the current data element data

dictionary format. The 'PART OF' field indicates what data element (if any) this data element is a

part of. Note that it is classified as a single field (i.e., only a single entry is permitted). Obviously,

if a data element is to have multiple parents, this data dictionary entry is inadequate in modeling

that feature of the IDEF0 language. Like the previous inadequacy, a "grouping" of fields in the

data dictionary entry is necessary to correct the inadequacy illustrated in Figure 13. The format

for this new grouping appears in the revised data element data dictionary format illustrated in

Figure 21.

Junctors. Assuming that the previous two inadequacies are corrected, a possible third inad-

equacy pertaining to modeling of junctors is considered but not resolved. Junctors are the points

where two or more arrows with different labels meet. It is argued that in order for an IDEFo

model to be recreated from the essential data model information, the junctors must be modeled

41



(S) NAME: (data element name) C25
(S) TYPE: (defaults to DATA ELEMENT) N/A
(S) PART OF: (parent data element name) C25
(M) COMPOSITION: (subcomponent data element names) C25

Figure 13. Abbreviated Data Dictionary Entry Format for Data Element

somewhere within the IDEF0 Essential Data Model and data dictionary. Several test cases were

developed, but a human test subject was always able to successfully recreate one of the equivalent

IDEF0 diagrams. It is hypothesized that a data dictionary with the previous problems corrected

can be developed such that the original IDEF 0 model can not be successfully derived from the

data dictionary. However, it is not one of the objectives of this research to prove or disprove the

hypothesis. Thus, the issue remains open for future research.

A Revised IDEFo Abstract Data Model

In this section, changes to the essential model are discussed and revised E-R models are

presented for both the essential and the drawing models. A table is also included to describe the

E-R constructs. The drawing models are from (40) and are included here in order to present a

"complete" pitture of the revised IDEFo Abstract Data Model.

Figure 14 illustrates the revised IDEF0 Activity Essential Data Model. The following changes

are made to the model:

1. The entity 'analyst' and the relationship 'analyzes' are dropped since the problem domain is

restricted to only IDEF0 language constructs. The attributes for both 'analyst' and 'analyzes'

are then modeled as attributes of the activity entity.

2. The 'name' of an activity is made the key attribute of the activity entity, since the previous

model lacked a key.

3. The attribute 'node number' is renamed to 'activity number' throughout the model.

42



Figure 15 illustrates the revised IDEF0 Data Element Essential Data Model. The following

changes are made to the model:

1. The 'alias' entity and the relationship 'has an' are dropped, because aliases are not consistent

with the IDEFO language.

2. The entity 'analyst' and the relationship 'analyzes' are eliminated in the same manner as the

activity essential data model.

3. To permit multiple decompositions of data elements, the entities 'pipe' (or composite data

item) and 'atomic data item' are dropped, and the relationship 'consists of' is modified to

reflect how data elements relate to one another. The fact that a data element can have

multiple parents is reflected by the 'm to m' relationship. This differs from the "composed

of" relationship which has a '. L m' relationship indicating only one parent. The multiple

decompositions are then tracked via the addition of the attribute 'decomposition id'.

4. The 'name' of a data element is made its key attribute.

Table 1 provides a description for each of thfi activiti and data element essential data model

constructs. Figures 16, 17, and 18 depict the revised IDEFO Drawing Data Model (40). Figure 19

illustrates the use of some of the entities and their relationships (40).

43



naeproject

O:m n u s n1 part of 1 r

I~n outputs On0 opsd :

element activity "

~~mechanize -=er

Figure 14neieduEoAciiyEsetabDt oe

O~n cals I 44



project 1:

.. ct.......ty . bycrpt

definpused

Fiur 1. evse IE DtaElmetessmenta DatniMode

O~n outp45



Table 1. Description of Components in the Essential Data Model

E-R construct Description
activity This entity, which is existence dependent upon project, represents theIDEF0 activities. Attribute name is the name of the activity and its pri-

mary key, and activity number captures the dominance of one activity over
another. Attribute, description, allows the analyst to describe the activ-
ity. Attribute, version, is used to record the current version number of
the activity; date indicates when the activity is created; changes captures
the change information about a given activity; author captures the author
name of this activity (16:12).

composed of This relationship shows that a given parent activity is composed of zero to
many (0:m) child activities. It also shows that each activity has one parent
activity. The 0:1 notation accounts for the fact that the A-0 activity does
not have a parent activity (16:12).

project This entity identifies the project to which each activity or data element is
assigned. Key attribute, pname, indicates the name of the project (16:12).

part of This relationship indicates that an activity or data element is part of exactly
one project, whereas a project contains one to many activities or data
elements.

ref This entity captures any references associated with an activity or data
element. Key attribute, reference, identifies which reference is involved, and
attribute, type, identifies the type of reference (16:12). This entity allows
a library of various documents such as DOD standards, user requirements,
contractual clauses, etc., to be tied to the given activity or data element.

based on This relationship indicates that a given activity or data eleme.t is based
on one to many references, and that a given reference is the basis for zero
to many activities or data elements.

hitstorical activity This entity is used to r-present an activity in another project that is "called"
by an activity in this project. Attribute, project, indicates which project
contains the historical activity, and attribute, activity number, identifies
the specific activity 'within the project.

calls This relationship indicates the fact that an activity can call zero to many
previously completed (historical) activities, and that a given historical ac-
tivity is called by one to many activities (30:3- 11).

based on (31:42-43)

46



Table 1 (continued): Description of Components in the Essential Data Model

E-R construct Description
inputs This relationship indicates that an activity can input zero to many data

elements. IDEF0 only requires activities to have control data elements and
output data elements (30:6-26).

outputs This relationship shows that an activity must have at least one but can
have many output data elements (30:6-26).

is controlled by This relationship shows that an activity can have one to many control data
elements (30:3-4).

is mechanized by This relationship indicates that an activity can have zero to many mech-
anism data elements. IDEF0 only requires activities to have control data
elements and output data elements (30:6-26).

data element This entity, which is existence dependent upon project, represents the
IDEF0 data elements. Key attribute, name, is the name of the data el-
ement. Attribute, data type, indicates the type of data (in the Pascal or
Ada sense); minimum is the minimum data value, if applicable, maximum
is the maximum data value, if applicable, and range is the data value range,
if applicable (16:14). In the case that the data element consists of other
data elements, none of the aforementioned attributes except name apply.
In the case that the data element does not consist of other data elements
and none of the attributes still are applicable, entity values, as described
below, probably applies. The remaining attributes are applicable in any
case and are identical to those of activity except that they, of course, relate
to a data element.

consists of This relationship shows that a data element can consist of two or more data
elements, and that a data element can be contained within multiple data
elements.

values This entity is used for data elements which do not consist of other data
elements and which have enumerated values, e.g., color can have values
red, blue, and green. The entity has a single (key) attribute, value (16:14).

can have This relationship ties a data element with no subcomponents to its corre-
sponding values entity.

based on (31:42-43)

47



drawable

object

for I
exposition x diagramonly C

verbal line

addition squiggle label segment box terminator

istoteori 1o

I- ode

Smeta-[note

(40)

Figure 16. Revised IDEFo Drawing Mod.l (Entities and Attributes)

48



diagram 0:1 omp

S-I
r[ - -- r -- - -" -- - -

for historical t data
Slmn Iactivity

only activityi elementII
-- ~-- L----------:

vadto squiggle box terminator
isreree

addtion i eabtie a uit

v ea s l connector

bstub

Idefined
m t- ia elsewhere

i s- - - - - - --. 1

(40)
Figure 17. Revised IDEF0 Drawing Model (Entities and Relationships)

49

to__toto



drawable
objectI

is
a

diaga

for
exposition connector

only stub

verbal ln
label squiggle addition segment box terminator

foot- me-
note note]nt

(40)

Figure 18. Revised IDEF0 Drawing Model (Classes)

50



r -.simple

box 3 abil

DATA--------4

L - -- squiggle

line boundary
segme~nt arrow~

It arrow

2 3

connector

stubs

(not visible)

(40)

Figure 19. IDEF0 Drawing Model Illustration

51



A Revised AFIT Data Dictionary Format

In this section, changes to the AFIT Data Dictionary formats are discussed and revised models

are presented for both the activity and the data element models. In order to make the necessary

modifications to correct the inconsistencies and inadequacies found in the data dictionary formats,

an additional field classifications are necessary to precede some of the fields.

As discussed in Chapter Two, the 'S', 'M' or 'G' that precedes the fields in the data dictionary

formats refer to terms 'single line field', 'multiple line field', and 'group field' respectively. An

extension to these three field classifications called 'MG' is discussed in (11). The classification

'MG' means a "multi-line field within a group- field"(11:33). However, the research includes no

syntactical definition for the classification. Therefore, the total revised field classifications for the

AFIT Data Dictionary Format are as follows:

" (S) means that the field consists of a single field that appears on a single line.

* (ML) means that the field consists of a single field that can appear on one or more lines.

" (MF) means that the field consists of one or more fields, and each field is a single field that

appears on a single line.

" (G) means that the field consists of two or more fields grouped together and multiple groups

are allowed. However, each group member is still a single field that can only appear on a

single line.

" (MG) means two or more fields are grouped together and multiple groups are allowed. Each

group member is permitted to be a single field, a single field of multiple lines, or multiple

fields. Therefore, each group member must be classified with either a 'S', 'ML', or 'MF' field

classification.

52



Note that the two field classifications 'MF' and 'ML' resolve the ambiguity problem with the

'M' classification that was discussed in Chapter Two by distinguishing between a single entry with

multiple lines (ML) and an entry that can consist of multiple fields (MF).

Figure 20 illustrates the revised data dictionary format for an activity. The following is a list

of changes that are made to the data dictionary entry for activities presented in Chapter Two:

1. The ALIASES and COMMENTS fields are dropped due to the aforementioned inconsistency

with the IDEFO language.

.2. The group-field CALLS is added to account for the "calls" that an activity can make to one

or more historical activities. This corrects an inconsistency with the data dictionary and the

activity essential data model.

3. The VERSION CHANGES field is renamed to just CHANGES and reclassified from a single

field only to a single field with multiple lines. The intent of this change is to allow for

additional information about the version to be stored. However, the entry can now be used

to store the history of the version changes.

4. The character length of the PROJECT field is extended to 25. This change is made because

a project is, in essence, a parent activity, and the name lengths should be compatible. The

original limit of only 12 characters is also considered to be slightly restrictive.

5. The character length of the AUTHOR field is extended to 25 characters to allow for greater

flexibility.

Figure 21 illustrates the revised data dictionary format for a data element. The following is

a list of changes that are made to the data dictionary entry for data elements presented in Chapter

Two:

53



(S) NAME: (activity name) 025
(S) TYPE: (defaults to ACTIVITY) N/A
(S) PROJECT: (project name) C25
(S) NUMBER: (activity number of this activity) C20
(ML) DESCRIPTION: (text description) C60
(MF) INPUTS: (data element name) C25
(MF) OUTPUTS: (data element name) C25
(MF) CONTROLS: (data element name) C25
(MF) MECHANISMS: (data element name) C25
(G) CALLS: N/A

PROJECT: (different or same project name) C25
ACTIVITY NUMBER: (activity number in the project) C25

(S) PARENT ACTIVITY: (activity name of parent) C25
(ML) REFERENCE: (cite a reference to the activity) C60
(S) REF TYPE: (the type of the reference) C25
(S) VERSION: (version of this entry) CI0
(ML) CHANGES: (a history of the changes) C60
(S) DATE: (mm/dd/yy of this entry) C8
(S) AUTHOR: (author's name) C25

Figure 20. Revised Data Dictionary Entry Format for Activity

1. The ALIASES, WHERE USED, and COMMENT group field is dropped due to the afore-

;nentioned inconsistency with the IDEFo language.

2. The fields PART OF and COMPOSITION are added to a new multi-line group-field called

DECOMPOSITIONS. This modification corrects the inadequacy in modeling multiple data

element decompositions.

3. The fields SOURCES, INPUTS, and OUTPUTS are added to a new multi-line group-field

called SOURCES/DESTINATIONS. This modification corrects the inadequacy in modeling

multiple source destination groupings of the same data element on the same diagram.

4. The VERSION CHANGES field is changed in the same manner as the activity data dictionary

entry.

5. The PROJECT field is lengthened to 25 characters for compatibility with the activity data

dictionary entry.

54



(S) NAME: (data element name) C25
(S) TYPE: (defaults to DATA ELEMENT) N/A
(S) PROJECT: (project name) C25
(ML) DESCRIPTION: (text description) C60
(S) DATA TYPE: (the type of data, if known) C15
(S) MIN VALUE: (minimum data value, if known) C15
(S) MAX VALUE: (maximum data value, if known) C15
(S) RANGE: (range of values, if applicable) C60
(MF) VALUES: (enumeration values, if appropriate) C25
(MG) DECOMPOSITION: N/A

(S) PART OF: (parent data element name) C25
(MF) COMPOSITION: (subcomponent data element names) C25

(MG) SOURCES/DESTINATIONS: N/A
(MF) OUTPUTS: (activity(s) where output) C25
(MF) INPUTS: (activity(s) where input) C25
(MF) CONTROLS: (activity(s) where a control) C25

(ML) REFERENCE: (cite a reference to the data element) C60
(S) REF TYPE: (the type of the reference) C25
(S) VERSION: (version of this data element) C10
(ML) CHANGES: (a history of the changes) C60
(S) DATE: (mm/dd/yy of this entry) C8
(S) AUTHOR: (author's name) C25

Figure 21. Revised Data Dictionary Entry Format for Data Element

6. The VALUES field is lengthened to 25 characters to permit a wider range of allowable enu-

meration values.

7. The AUTHOR field is lengthened to 25 characters for compatibility with the activity data

dictionary entry.

The Expert System Requirements

One of the purposes of this research is to demonstrate the feasibility of integrating an expert

system with a CASE tool. In this case, it is the integration of the Ada based CASE tool, SAtool

II, and an Ada based expert system that is used for the syntax checking of an IDEF0 model.

As discussed in Chapter Two, the process of formalizing IDEFO syntax into predicate logic

facts is outlined in (20). A prototype rule-based expert system is developed in (20) and expanded

55



in (24) to perform syntax checking of IDEFo syntax. The same Prolog expert system shell that

represents IDEF0 predicate logic facts as [Object, Attribute, Value] triples is used in both research

efforts (20, 24). In addition, if...then constructs are used to represent the rules. By using a shell,

only the rules and the facts are required - the inference engine is already supplied. Integration

problems between the programming language C and Prolog plagued both research efforts.

Therefore, in order to maximize the reuse potential of past work while also avoiding past

integration problems, the expert system selected for this research should have the following features:

" The expert system should, in fact, be an expert system tool (or shell).

" The expert system tool must be in Ada.

* The knowledge base of the expert system tool should have a procedural representation scheme.

This means rules should be in the form of if...then constructs.

* The knowledge base and the working memory should have a fact representation scheme that

allows facts to be stored as [Object, Attribute, Values] where 'Values' can be one or more

values. This extension of the standard OAV triple is necessary, because the OAV triple

cannot acc'irately represent some of the information in the essential data model that pertains

to relationships.

* The expert system tool should have a clearly defined methodology for being embedded within

Ada external programs.

The requirement for the expert system shell to be implemented in Ada severely constrained

the available candidates. Several shells are discussed in (2), but all of them are commercial tools

whose source code would probably not be made available. Ada source code for both forward and

backward chaining expert system shells is presented in (4), but the code lacks a clearly defined

methodology for being embedded within other Ada programs.

56



Early in this research investigation, an Ada version of CLIPS (CLIPS/Ada Version 4.3)

that is fully syntax compatible with the C version of CLIPS was released by Computer Sciences

Corporation under contract with the U.S. government. Fortunately, CLIPS/Ada meets all the

above requirements. The following is an abbreviated list of its features:

" CLIPS/Ada is an expert system shell (or tool).

" CLIPS/Ada is implemented entirely in Ada.

* Rules in the knowledge base are in the form of if... then constructs as is shown in Chapter

Two.

" Facts in working memory are represented in a LISP like format with one or more fields of

data enclosed by parentheses. There is no maximum to the number of fields in a fact.

* The CLIPS/Ada Advanced Programming Guide details the ability of CLIPS/Ada to be in-

tegrated with external programs and its ability to be embedded within programs (32:2-24).

These programs can be in several languages, including Ada.

In order to validate that CLIPS/Ada met the above requirements, a prototype expert system

is developed and integrated with the OOD produced in (38). After modifying the source code in

(38) to make it operational, the integration proceeded smoothly. Embedded calls to CLIPS from

within Ada suhprograms permitted facts to be loaded into working memory, a rule base to be

loaded from disk, and CLIPS to be executed. A limited number of IDEF0 syntactical features are

examined by a similarly limited set of rules. Several test suits of IDEF0 features are created and

checked with no unexpected results.

Since CLIPS/Ada meets or exceeds all the necessary requirements, it is selected to become

part of the Essential Subsystem and eventually part of SAtool I. Appendix C provides some

additional info'.mation concerning CLIPS/Ada.

57



Summary

This chapter presents revised versions of the IDEFo Essential Data Model and the AFIT

Data Dictionary Formats. Both models are provided as requirements documents for developing

an Ada based object oriented design of the essential data model. However, several inconsistencies

and inadequacies are identified in the models and are corrected prior to continuing with the object

oriented design phase. The methodology used in identifying both the inconsistencies and the

inadequacies is also presented. In addition, the rationale used in making the modifications to the

models is also discussed. The revised models are then presented. The requirements for the expert

system and a discussion of the selected expert system are presented as well.

Since an exhaustive review of the requirements is not a mandate for this research, no assertion

is made that the revised IDEFo Essential Data Model and the revised AFIT Data Dictionary

Formats presented in this chapter are free of additional inconsistencies, inadequacies, or other

errors.

58



IV. DESIGN

Introduction

The beginning of the object oriented design process for the Essential Subsystem is presented

in this chapter. Where applicable, the methodology used is discussed in terms of the object oriented

design process methodology presented in (7).

" Identify the classes and objects at a given level of abstraction.

+i

" Identiy the semantics of these classes and objects.

" Identify the relationships among these classes and objects.

" Implement these classes and objects. (7:191-.195)

There are twvo basic modes to software design: functional design decomposition and object

oriented design decomposition (39:185). The choice of an Ada based object oriented design decom-

position approach over a more functional design decomposition appr~ach is due to the desire to

assess the feasibility of both Ada and the object oriented design process in the development of a

CASE tool, SAtool IL.

The choice of presenting the object oriented design process in terms of (7) is made because

the methodology is both taught and advocated by AFIT/EN~G, and it is AFIT/ENG students and

faculty that will most likely perform follow on research to this investigation.

This primary focus of this chapter is on issues related to the first three steps of the object

oriented design process. The next chapter includes information relevant to the last step in the

process as well as other implementation details. Although the approach presented here may appear

sequential at times, a highly iterative process actually occurred.

The first step of the object oriented design process consists of two tasks (7:123):

*Identify the classes and objects that form the vocabulary of the problem domain.

59



9 Invent structures whereby sets of oLjects work together to provide the behaviors that satisfy

the requirements of the problem.

The classes and objects are called key abstractions of the problem, and the cooperative struc-

tures are called the mechanisms of the implementation (7:123).

The first section in this chapter is a discussion of two opposing views of how to identify object

classes. Although the discussion focuses on only the essential data model, the selected viewpoint

influences the entire object oriented design process.

The key abstractions for the Essential Subsystem are derived by examining the four subprob-

lems that are presented in Chapter Three. The mechanisms necessary for some of these object

classes are then presented. Discussions on the output file formats and the expert system design are

included as well. A graphical representation of the preliminary design is presented which is then

followed by more detailed design information on the semantics and relationships among the objects

of the Essential Subsystem. Based on this information, a more detailed graphical representation of

the design is presented. Finally, a summary of the results of this chapter is presented.

The Level of Observation in Object Class Selection

The requirements specification presented in the last chapter states that the development

and implementation of the essential data model are to be based on the corresponding E-R model.

However, neither the requirements specification nor the subproblems based on those requirements

specify from what level of observation the E-R model is to be viewed. A particular view is necessary

since different object classes may be derived based on the level of observation the designer takes.

Therefore, two different methods for identifying the object classes are considered. The methods

considered are based on the level of observation taken towards an IDEF0 model: an outside (public)

view or an inside (private) view. Note that the inside and outside views discussed here are not

intended to correspond to the inside and outside views discussed by Booch (7:123).

60



A completed IDEFo model viewed from the outside is a hierarchy of IDEF0 diagrams with

the A-0 diagram at the top of the hierarchy. This hierarchy can be modeled as a tree where each

node of the tree is an individual IDEF0 diagram. Incomplete IDEFO models that are built from

the bottom up can then be viewed as a forest of trees.

A single, complete IDEFo diagram viewed -from the outside closely resembles a graph with

the exception that there is no apparent "source" for the incoming arcs and no apparent "sink" for

the outgoing arcs. Figure 22 illustrates how the IDEF0 diagram of Figure 10 could be modeled

as a graph by adding a "source activity" and a "sink activity". However, note the introduction

of the small circles that model the branching of data elements. The places where arrows meet

are sometimes referred to as junctors (14:61) and would have to be modeled somehow in a graph

representation scheme.

From the outside, entities such as activities and data elements would simply be nested objects

or subcomponents of the "node" object class, where node represents an IDEF0 diagram. Relation-

ships between activities, data elements and other entities could be embedded within the different

object class definitions. For example, the relationship 'composed of' could be correctly modelad

by the tree. Intuitively, each branch of a tree could be modeled as one or more instances of the

relationship 'composed of' since the branches represent parent-child relationship among the data

in a tree.

An inside view of an IDEF0 model is that of a single IDEFo diagram. The inside view

does not explicitly represent the hierarchy of diagrams or the diagrams themselves. Its primary

concern lies solely with the entities and their relationships. However, the hierarchy of diagrams

can be determined, as well as the activities and data elements that appear on a diagram. These

entities are not explicitly modeled as they are in the outside view. This appears to be the intended

viewpoint of the IDEFO Essential Data Model presented in the previous chapter. The essential

data model does not contain a hierarchy entity nor a diagram entity, since that information can

61



~~labnr re

nult stn \\o o .ie.s°.

cash' o,,

- .floppies profi pi

Seli profit -

Figure 22. Graph Representation of IDEFo Diagram for 'Market Floppies'

62



be derived from the relationships. The hierarchy, for example, is modeled as a single relationship

called 'composed of'. Note that in the outside view, the hierarchy is the entire model, whereas in

the inside view, it is just one E-R construct among many others.

There are several reasons for selecting the inside view of the IDEFo model as the level of

observation from which the objects are to be identified.. Some of the reasons are influenced by

implementation issues. Theoretically, implementation issues should not be addressed at this point

in the object oriented design process, but considering these issues is sometimes unavoidable.

The primary reason for choosing the inside view is flexibility. The object classes necessary

to implement the outside view would require relationships imbedded within them. By imbedding

relationships within object classes, the number of objects implemented can be reduced. However,

this can result in tighter coupling between objects. Thus, adding or changing relationships would be

both difficult and time consuming. Explicit modeling of relationships in the inside view, however,

allows for greater ease in adding and modifying relationships at a later point in time. An example

of the lack of flexibility in an OOD is provided by Smith's OOD for the essential data model which

consists of only three object classes (38:4-14). His design strategy resulted in all relationships being

embedded as subcomponents of object classes.

As shown in Figure 22, the most likely way to model an IDEF0 diagram from the outside

view is a graph. Unfortunately, a graph cannot sufficiently model all the different relationships

between activities and data elements regardless of how the graph is actually implemented. An

arc in a graph consists of a pair of vertices (18:273) just as a data element relates two activities.

However, when an arrow connects two boxes, there are additional relationships based on where the

arrow physically connects to the boxes. A graph has no equivalent paradigm for these additional

relationships. Since an arc must consist of two vertices, a graph also cannot model an arrow without

a source or destination which would be a common occurrence in a CASE tool based on IDEFo. A

graph can consist of partial graphs that may only be a single node, but all arcs in a graph must

63



consist of a pair of vertices (18:273). Also of concern are the junctors. In a graph where activities

are modeled as the nodes of the graph, would the junctors also be modeled as nodes?

An examination of the terminology used in the discussion of the opposing views highlights

another, more subtle reason. In discussing the outside view, the terms used are hierarchy of

diagrams and diagram. These terms are more closely related to graphical representation of an

IDEF0 model. Thus, the outside view appears to be more closely oriented with the drawing data

model view of the IDEFo language.

E-R Model to OOD Mapping Technique

Due, in part, to the size and complexity of the ID.CI 0 Essential Data Model, the process of

identifying objects from the E-R models demands a systematic approach. Therefore, a mapping

technique is developed from the entities and relationships in an E-R model to 0OD object classes.

Ideas from both the Keystone System Design Methodology (23) and Object-Oriented System Analysis

(37) are used in developing the technique and defining the object classes.

The concept that all relationships in an E-R should be modeled as objects is considered from

(23:102). In fact, this concept is partially adopted. Concepts from (37) are used in determining

how to model relationships as objects.

The mapping technique presented here is the result of a joint effort (40) and can be used

to map the entities and relationships of any E-R model containing only those E-R constructs that

appear in the essential data model. Hence, it is not a generalized mapping technique for all possible

E-R models. The three types of relationships present in the essential data model are referred to

in terms of their cardinality with the entities they relate. Note that the relationships listed below

implicitly include their conditional variations. For example, the 'many to many' relationship im-

plicitly includes the 'many to many conditional' relationship. The conditional variations mentioned

here correspond to those presented in (37:60-64).

64



" one to one relationships

" one to many relationships (including many to one)

" many to many relationships

It is the above relationships that are used to drive the object selection process. The following steps

detail the mapping technique used.

1. Any entity that participates in more than one relationship becomes an object class.

2. Any 'many to many' relationship that relates two entities already identified as object classes

becomes an object class itself.

3. Multiple 'many to many' relationships between two entities which have already been mapped

into object classes are combined into a single object class only if the relationships they model

between the two entities are similar. If dissimilar, they remain as separate objects.

4. An entity (including its attributes) that participates in a single relationship that is a 'many to

many' relationship becomes a multiple field attribute of the second entity in the relationship.

The 'many to many' relationship is not mapped into an object class, and any attributes of

the relationship become attributes of the other entity as well. Note that the first entity, in

this case, should not be "complex", where complexity is defined as an entity possessing at

least one multiple field attribute. If the entity is complex, then the entity, as well as the

relationship, should be modeled as objects.

5. An entity (including any attributes) that participates in a single relationship that is either

'one to one' or 'one to many' becomes either a single field or multi-field attribute of the

other entity. The relationship is not mapped into an object class, and any attributes of the

relationship become attributes of the other entity as well. Again, note that the entity, in this

case, should not be "complex". If the entity is complex, the entity is modeled as an object,

65



and the relationship is modeled by placing a key attribute from one of the entities into the

other entity as a foreign key.

6. Any remaining relationships are either .. j one' or 'one to many' relationships between

entities that have already been mapped to object classes. These relationships are not mapped

into object classes. For the 'one to one' relationship, a foreign key attribute of either of the

entities must become an attribute of the other entity. For 'one to many' relationships, a

foreign key in the many entity became a multi-field attribute of the one entity.

The Key Abstractions

This section presents the key abstractions of the problem and solution space.

Essential Data Model Key Abstractions. Applying the mapping technique to the essential

data model yields the object classes and associated attributes depicted in Table 2. All attributes

in the table consist of a single field of data unless otherwise noted.

Upon examination of the object classes presented in Table 2, it is clear that the mapping

technique presented earlier is not followed in all cases. The following exceptions to the mapping

technique are made:

* Since the 'reference' entity will likely be infrequently used, mapping it and the two 'based

on' relationships into objects seem unnecessary. Therefore, the reference entity is considered

to be two separate entities - one related to an activity and one related to a data element.

By abstracting 'reference' as two separate entities, step four in the mapping technique is

applied to permit them to be modeled as attributes. Furthermore, the cardinality between

the activity entity and the reference entity was reduced for implementation purposes down

to a 'one to m' versus a 'n to m' relationship. Thus, an activity is allowed only one reference,

where a reference consists of a multi-line 'reference' field and a single 'reference type' field.

66



Table 2. Objects Classes and Attributes Based on the Essential Data Model

Object Class Attributes
Project Name
Activity Name

Number
Description (multiple lines, single field)
Children (multiple fields)
Reference (multiple lines, single field)
Reference Type
Version
Changes (multiple lines, single field)
Date
Author

Data Element Name
Data Type
Minimum
Maximum
Data Range
Values (multiple fields)
Description (multiple lines, single field)
Reference (multiple lines, single field)
Reference Type
Version
Changes (multiple lines, single field)
Date
Author

Historical Activity Project Name
Activity Number

Calls Relation Activity Name
Historical Activity

Consists Of Relation Decomposition Id
Parent Activity Name
Child Activity Name

ICOM Relation ICOM Id
Activity Name
Data Element Name
Relationship Type

67



* Since the implementation of SAtool II will only permit a single project, there is no need to

model the relationships between 'project' and 'data element' and 'project' and 'activity'. By

default, all activities and data elements that exist in the model belong to the single project.

Each of the object classes in Table 2 models one or more of the entities and relationships

depicted in the IDEFO Essential Data Model.

1. Activity Class. This class models the entity 'activity' and its attributes. It also models the

relationship 'composed of' via the multi-field attribute 'children' which contains a list of the

activity's child activities (if any). The activity class attributes 'reference' and 'reference type'

model their respective attributes of the 'reference' entity in the E-R model. This modeling

is possible because of the aforementioned exceptions made to the mapping technique. An

instance of this class (i.e., an object) is uniquely identified by the 'name' attribute.

2. Data Element Class. This class models the entity 'data element' and its attributes. Its

'reference' and 'reference type' attributes model their respective counterparts in the data

element essential data model. Objects in this class are uniquely identified by the 'name'

attribute.

3. Historical Activity Class. This class models the entity 'historical activity' and its attributes.

Note that the entity 'historical activity', like the entities 'activity' and 'data element', appears

in both the essential and drawing data models. Objects in this class are uniquely identified

by a combination of the 'project name' and 'activity number'.

4. Calls Relation Class. This class models the relationship 'calls' which relates an activity to one

or more historical activities. Objects in this class are uniquely identified by a combination of

an 'activity name' and the key from the historical activity class - 'historical activity'.

5. Consistb Of Relation Class. This class models the relationship 'consists of'. For every one

data element that is decomposed, two or more objects in this class are created based upon

68



how many subcomponents the data element is split into. For example, if the data element 'i'

is decomposed into 'a' and 'b', two objects from the consists of class would be created and

assigned the same "decomposition id". The "decomposition id" insures that if 'i' is decom-

posed in a different manner elsewhere in the model, that decomposition can be differentiated

from another decomposition of 'W'. This capability is necessary to correctly model the IDEFO

feature that permits a data element to appear in multiple decompositions (i.e., have multiple

parents). Objects in this class are uniquely identified by a combination of all its attributes

depicted in Table 2. Note that a decomposition of a data element can be derived not only

from the data element being "split" into two or more parts but also from two or more data
i

elements being "joined" together.

Replications of data elements are not members of this class. For example, if data element

'im' is split into 'i' and 'i', this is considered a replication of 'i' and not a decomposition.

Replications of data elements decrease the clutter on an IDEF0 diagram by reducing the

number of arrows required between boxes but have no meaning in the essential data model.

Consistency within this class is maintained by considering each data element as a set. A

data element that does not consist of any other data elements is a set with one member -

itself. Otherwise, a data element is a set containing its component data elements. Thus,

if performing the set theory operation union among all the subcomponents a data element

yields the same data element, consistency is achieved. The application of the union operator

among the subcomponents is not without precedence since it is also used by Ross (36:20). It

is this view of the Consists Of Class that is enforced in the implementation of the Consists

Of Relation Manager presented in the next chapter.

6. ICOM Relation Class. This single class models the four relationships that exist between

activities and data elements. The "relationship type" attribute captures the different rela-

tionships by having the values 'i', 'c', 'o, or 'i' which represents input, control, output, and

69



Table 3. ICOM Relation Class Instances for Data Element 'floppies'.

ICOM Id Activity Data Element Relationship
1 Buy Floppies Floppies o
1 Sell in store A Floppies i
2 Manufacture Floppies Floppies o
2 Sell in store B Floppies i

mechanism respectively. An object of this class is created whenever a data element (an arrow)

is related to (is connected to) an activity (a box). The "ICOM id" is necessary to handle

the multiple source-destination groupings that can occur. For example, Table 3 illustrates

the four instances of the ICOM Relation Class that would be required to correctly model the

data element 'floppies' in Figure 10.

Xote that the term "ICOM" used in this context should not be confused with the ICOM

codes discussed in the IDEF0 manual (30:4-8).

The Data Dictionary. The discussion presented here refers to the identification of any object

classes related to the creation, editing, or outpdt of data dictionaries. The data dictionary used by

SAtool II is simply a human readable representation of the essential data model information. The

creation of a data dictionary entry is considered to be the creation of ASCII text that contains the

fie',,' of a data dictionary entry with the appropriate information from the essential data model

displayed in the fields. Thus, at least one object class is required to model the text representation

of the data dictionary entry. To output a data dictionary entry to a file or to output device, the

same object class can be used.

Editing a data dictionary entry is another part of the problem. As stated earlier, the data

ictionary is a human readable representation for the information in the essential data model. The

data dictionary can, therefore, be used as a template for editing IDa.F 0 features not shown on the

IDEF0 diagram. For example, a data element has a version number, but the IDEFo language has

70



io way to represent that version number on the IDEFO diagram itself. Thus, the individual fields

of the data element data dictionary entry format are used as a convenient human-machine interface

for entering the essential data model information. The key abstractions that capture the user input

are part of the graphical user interface. Therefore, they are not modeled here.

Consequently, only a single object class, Data Dictionary is identified. The b rmat for storing

data dictionary information is explained in a later section within this chapter.

The CLIPS/Ada Expert System Interface. There are two options for integrating CLIPS/Ada

with SAtool II:

1. Embed CLIPS/Ada within SAtool II. SAtool II is therefore the client procedure.

2. Make calls to SAtool II from within CLIPS/Ada. CLIPS/Ada is therefore the client proce-

dure.

The first option is clearly the desired one, since the objective is a CASE tool that can perform

syntax checking via an expert system, not the reverse.

As with most expert system shells, CLIPS/Ada already provides an inference engine. In

fact, CLIPS/Ada employs a forward chaining reasoning method (35:128). The two remaining

components are the knowledge base and the working memory. The knowledge base in this case

contains the rules for IDEF0 syntax checking. These rules, together with facts about the problem to

be solved, are loaded into the CLIPS/Ada working memory where the inference engine can employ

the three phases of the recognize-act cycle.

In this case, an interface to the CLIPS working memory is needed, so a client program

(SAtool II) can add essential data model facts and load rules from the knowledge base into the

working memory. Therefore, a key abstraction called CLIPS Working Memory Interface is sug-

gested to model the interface between the CLIPS working memory and SAtool II.

71



The Essential Data Model Infortnation. In order to save and restore the state of an IDEF0

model, the key abstraction Essential 10 is identified. To physically store the information that is

contained in instances of the object classes of the essential data model, an interface to the system is

required to output a file. Likewise, when loading essential data model information, a file of essential

data model information is required. Essential 10 models that interface.

The issue of storing essential data model information to a file triggers a question. What is

the format of the information to be output? The answer to this question is presented in the File

Formats section.

Error Handler. The basic strategy for exception/error handling (25:91) accurately desc,

the initial methodology used in this research . However, this strategy is considered inadequa, r

large-, object-based Ada systems for the following reasons (25:93-94):

" Exception handlers are replicated.

* Maintenance of exception handlers is difficult.

" Limiting and controlling error reporting is difficult.

Although the term "large" is never quantified (25), the above difficulties accurately reflect the

problems in implementing the initial error handling methodology used for this research. Several

complex alternative methods are presented for overcoming these difficulties (25:94-101). However,

implementing any of these alternatives requires significantly more time than is available for this

research. Therefore, an alternative, less complex, error handling methodology is jointly devised

(40). In short, the basic strategy is abandoned in lieu of a more centralized approach to error

handling. Since the design methodology for this research is object oriented, the new error handling

methodology is modeled as another key abstraction, the Error Handler, whose purpose is to provide

a single focal point in the model for error handling.

72



The Mechanisms

Now that the key abstractions or object classes are identified, the mechanisms by which they

interact must also be defined. It is these mechanisms that are considered the soul of the design.

Whereas key abstractions reflect the vocabulary of the problem domain, mechanisms
are the soul of the design. During the design process, the developer must consider not
only the design of individual classes, but also how instances of the classes work together
(7:148).

It is ,instances of classes working together that drives the identification of the mechanisms that

appear in this section.

During the creation of an IDEFo model, multiple instances of each of the object classes

derived from the essential data model occur. An IDEFO model consists of multiple instances of the

data element class, the activity class, etc. Multiple instances of the same object class are grouped

together into homogeneous collections to properly reflect their ipterrelationship with one another.

Of all the object classes identified so far, only the object classes derived from the essential data

model have multiple instances.

By examining Table 2, it appears that seven different mechanisms or manager mechanisms

will be required. However, the current implementation of SAtool II permits only one instance of the

project class. Therefore, no mechanism for the project class is necessary. This leaves the following

six manager mechanisms:

" ActivityManager

" Data.Element.Manager

* Consists-Of-RelationManager

" Historical.ActivityManager

" Calls.RelationManager

73



* ICOMRelation.Manager

There is some underlying similarity in these six manager mechanisms. The apparent function of

each one is simply to manage multiple instances of a class. Therefore, the concept of a generic

manager is suggested.

Another name for a generic manager is a parameterized class.

A parameterized class (also known as a generic class) is one that serves as a template for
other classes - a template that may be parameterized by other classes, objects, and/or
operations (7:118).

By labeling the generic class as a class in (7), it implies it is a key abstraction. However, the same

construct is later referred to as a generic class mechanism (7:118). Thus, it is not clear whether

the generic class is considered a class, a mechanism, or some combination thereof. For the purpose

of this research, however, the terms generic class and/or parameterized class are considered as

key abstractions. Consequently, an additional key abstraction is identified during the process of

identifying mechanisms. The term Generic Multiple Object Manager is used to represent this key

abstraction.

File Formats

Having identified the Essential 10 and Data Dictionary as key abstractions that output

information, a discussion of the output format for both the data dictionary and the essential data

model is necessary 1 .

The output format for data dictionary information is based on the formats presented in

Tables 20 and 21 in Chapter Three. The textual description of the fields, the character lengths of

the fields, and the field classifications (i.e., (S), (G), (M), (MF), (ML) and (MG)) are not included

2Additional SAtool II output file formats can be found in (40).

.74



in the output format. Any file name associated with an output data dictionary is affixed with an

'.edd' extension.

The output format for the essential data model (sometimes referred to as the project data)

is significantly different from the data dictionary. Actually, since the data dictionary is suppose to

represent all the essential data model information, the data dictionary format coulA theoretically

be used as the output format. The original intent of this research was to follow the file format

established in (11). However, an examination of the format revealed that it is based on the earlier

interpretation of the IDEF0 language that did not account for multiple decomposition of data

elements or multiple source-destination groupings of data elements. Thus, to use this format,

changes in the format itself would be necessary. Since research time is not allocated for such

changes, an alternative method is devised.

The requirement for the expert system to perform syntactical checks of the IDEF0 syntax

meant that a formalization of the IDEFO syntax into a 'computer readable' form would be required.

As discussed in Chapter Two, the formalization of the process of transforming IDEF0 syntax into

predicate logic facts a. -ien to OAV triples for use in an expert system is already accomplished

(20). Because CLIPS facts have a similar representation scheme, the process can be readily adapted

to converting the information in the essential data model to CLIPS facts. These facts can then be

transferred to the CLIPS Working Memory Interface.

With one formalization method already implemented (20), a joint decision (40) is made to

simply redirect the facts from the CLIPS Working Memory Interface to an output file whenever a

project is to be stored. Therefore, the file format for the essential data model is simply that of a

CLIPS fact file. The same file format could also be applied to the drawing data model information

which is stored separately (40). Output files with essential data model information carry an '.esm'

extension. Output files with drawing model information carry a '.drm' extension. More information

on fact representation is presented in the next section.

75



Expert System

There are three main concerns for the successful integration of the expert system with the

Essential Subsystem and eventually SAtool II:

" The interface between the Essential Subsystem (SAtool II) and CLIPS/Ada.

" The representation and formulation of the facts.

" The representation and formulation of the rules.

Since the interface is achieved by the CLIPS Working Memory Interface package, this section focuses

on the last two concerns.

Note that the expert system design process is not presented as a separate methodology in this

research but is integrated within the Essential Subsystem design process. Comprehensive expert

system development methodologies do exist (21, 22) but do not apply in this case, since the primary

goal is the creation of a CASE tool that uses an expert system - not an expert system that uses a

CASE tool.

As stated in the last chapter, the representation method for the essential data model infor-

mation is CLIPS/Ada facts. Facts are used to represent the essential data model when it is being

stored to a file and when it is to be loaded into the CLIPS working memory for syntactical checks.

Facts in CLIPS/Ada have a "LISP-like" notation of one or more fields surrounded by a single set

of parentheses (35:2). A field can be either a word, a number, or a string, and are totally free

form, i.e., the only limit on the number of fields in a fact is the memory of the system (34:1-2-1-8).

Previous research efforts (20, 24) use only facts of the form [Object, Attribute, Value] which are

otherwise known as OAV triples. These investigations conclude that OAV triples are sufficient for

modeling a subset of the essential data model information.

Unfortunately, those investigations (20, 24) have two deficiencies:

1. Neither investigation translates every feature of an IDEF0 model into facts.

76



2. Both investigations use a paradigm of the essential data model that does not correctly model

multiple decompositions of data elements and multiple source-destination groupings of data

elements.

As a consequence of correcting the first deficiency, the OAV construct for representing the

essential data model information is no longer adequate. For example, both activities and data

elements have multi-line descriptions, where each line consists of a number of words within a 60

character limit. If the OAV triple construct is used, a fact for each word must be declared. On the

other hand, if the fact representation method is revised, a single fact can represent all the words

in a single line of the description. Thus,

(act-desc "activity name" wordi word2 word3 ... )

is a CLIPS fact which has the general form (attribute, object, value, value, ...), where 'attribute'

defines the type of fact, 'object' is a variable that is the actual name of the activity, and 'value' is a

word of the description. Note that CLIPS does not care how the information in a fact is arranged,

it only cares that the information is enclosed in parentheses and separated by one or more spaces.

Therefore, the user is free to implement any positional representation scheme as long as it in a

LISP-like format.

The addition of the 'Consists Of Relation Manager' and the 'ICOM Relation Manager' corrects

the second deficiency but exposes another inadequacy in the OAV const-.uct. By modeling relations

as objects, the OAV triple is again no longer adequate. For example, the ICOM information

presented in Table 3 models a relationship between two objects - a data element and an activity.

The relationship between two objects does not fit into the OAV triple construct which has but

one object in its tuple. Therefore, a revised methodology for representing the information in

relationships is necessary. Basically, the method chosen is an attribute followed by the tuple of the

relationship. Thus,

(icom-tuple Buy-Floppies Floppies o 1 )

77



is the CLIPS fact representing the first entry in Table 3. This same methodology is applied to the

representation of facts for each of the objects that implement relationships.

Appendix G presents examples of the facts that are sent to the CLIPS Working Memory

Interface object and Appendix F presents examples of facts that are used to store the state of

the essential data model. Of particular interest is that there are two different groups of facts:

syntactical facts, and state representation facts. Syntactical facts are those sent to the CLIPS

working memory for syntax checking, whereas state representation facts simply represent the state

of the IDEF0 model. This difference is evident in the representation of description of an activity or

data element. From a syntactical viewpoint, the value of the description is irrelevant; its presence

or absence is the only concern. Therefore, the facts

(act-desc "activity name" not-null)

and

( act-desc "activity name" null )

represent the presence and the absence of an activity description respectively. Only one .fact or

the other is placed into the working memory of the CLIPS expert system. On the other hand, the

state representation of the description requires the "value" of the description to be stored. Thus,

its fact representation is that shown earlier in this section.

As shown in Chapter Two, the rules of a CLIPS/Ada expert system are in the form of if hen

constructs. For example, the rule below prints a warning message if an activity is found without

a description. The '?act' acts as a variable which is instantiated with an activity name if the rest

of the left hand side of the rule is matched as well. Thus, every activity with a null description

triggers a warning message to the user.

(defrule null-activity-description
(act-dese ?act null)

(printout t "Warning: Activity" ?act "needs a description." crlf))

78



Many rules, similar to the above rule, are to be written. The purpose of the rules is to check

the syntactic validity of an IDEFO model. These are just a few of the checks that the expert system

should perform.

1. The number of input, output, control, and mechanism arrows for each activity should be

checked to insure a valid number of them are in place.

2. The boundary arrows of an activity and its parent activity should be compared to insure the

IDEF0 hierarchy is consistent.

3. The description and activity number of an activity should be checked for their presence or

absence.

The next chapter describes the rules that are actually implemented.

Preliminary Design

Figure 23 is an object diagram (7:171) of the preliminary design. The notation used is based on

(7:170). Note that the CLIPS/Ada expert system is represented by the object CLIPS in Figure 23.

The Generic Multiple Object Manager

Because the Generic Multiple Object Manager is the building block for many of the objects a

more detailed discussion of its design is warranted. The term encapsulatioa used in this discussion

means that the inside view of an object class is hidden from all client programs. In other words,

client programs can only access an instance of the object through a selected set of operations or

methods. It is only through these operations that an instance of an object class can be acted upon

by client programs.

The recognition of mechanisms as the soul of the design (7:148) is particularly relevant to

the generic class Generic Multiple Object Manager. The design and implementation of this generic

79



Activity Data Historical Calls Consists Of ICOM
M a r Element Activity Relation Relation Relation

anager Manager Manager anager Manager

Essentialsing

Figre23 OjetDiagameiti ng P Deliinayonl bsse Dsg

80oec



class either directly or indirectly impacts on almost all other objects in the Essential Subsystem

and the rest of SAtool II.

In both the essential data model and drawing data model, there exists a requirement for a

mechanism for managing multiple instances of object classes. However, some of the object classes

have multiple attribute fields. If strict encapsulation of these classes is followed, three layers of

abstraction may be implemented between the client program and an instance of the object class.

" Layer 1. The object class itself is encapsulated with one or more operations. Typically, there

are at least two operations for each attribute - one to set the value of an attribute and one

to determine the value of an attribute. Operations to create, initialize, and delete the object

are also typically implemented.

" Layer 2. The instantiation of the generic class to manage instances of a particular object class

results in an object class - not an object. An instance of this object class results in the actual

manager mechanism which now allows primitive operations on the manager to be perforn'id.

These normally include is-empty, add.item, removeitem, initialize, clear, value.of-item, etc.

However, to actually access the internal representation of the item, the operations imposed

by the Layer 1 level of abstraction must be used.

* Layer 3. nc, the client programs within SAtool II need to perform more than just the

primitive operations available from the generic class, the manager mechanism must also be

encapsulated which results in a third layer of abstraction.

Encapsulation of object classes has its consequences in terms of increased system overhead because

of additional message passing (7:216). Since the response time of a CASE tool ik critical to its

acceptance by the user community, the decision is made to eliminate a layer of abstract;on by not

encapsulating any of the object classes from the essential data model2 . This decision also reduces

the size of the object code.

2This applies to those object classes with nultiple instances which excludes the project class.

81



In order to increase the efficiency of the Generic Multiple Object Manager itself, a unique

design decision is made. What makes the design and implementation of this generic class unique

is that it exports an Ada access type (i.e., a pointer) that permits direct access to any item in

the manager. This implementation was considered to be necessary because of the presence of

object classes with large number of attributes. Operations to change these attributes typically take

O(the-manager-size) time' in the worst case for unordered items. This is considered unacceptable

for a CASE tool. Therefore, the risks involved in violating the encapsulation philosophy are accepted

and implemented. This implementation thus reduces the time complexity of the operations on the

attributes to 0(1) time.

Fortunately, this generic class can also be used to manage multiple instances of object classes

with only a single field (i.e., an object class with a single type). Several examples are presented

in the discussion of the Environment-Types package in the next section. A demonstration of the

flexibility of the Generic Multiple Object Manager is offered by an examination of the source code

contained in Volume II of this research which reveals no other mechanisms for the management of

multiple instances of object classes (e.g., linked lists, queues, rings, etc.).

The Semantics

The semantics of an object are the operations (or methods) that client programs can perform

on the object and the operations that the object performs to act upon other objects (7:80). In this

research, the methods for each of the objects are represented via Ada .package specifications. It is

these specifications, viewed together as a whole, that describe the semantics of all the objects in

the Essential Subsystem.

3For an cxplnatiok of the Big.O notation see the Order Of Analysis section in the next chapter.

82



The semantics (i.e., the package specifications) for each of the objects can be found in Vol-

ume II of this research which contains all the source code. Volume II is available through the Air

Force Institute of Technology, Department'of Electrical and Computer Engineering.

Note that the Activity Manager, like all the other managers, is a server object (7:89). In

other words, the managers have only sufferfd operations upon them and do not operate on other

objects in the subsystem. The reason for this design decision is explained in the next section.

The Relationships and Visibilities

This section discusses the reasoning behind the relationships and visibilities among the various

objects in the Essential Subsystem. A relationship between two objects means that message passing

occurs between them (7:170). The visibility between two objects details how the two objects see

one another.

Of particular interest are the relationships among the six manager mechanisms. The issue is

one of responsibility for the integrity of the design. In other words, are the manager mechanisms

themselves responsible for updating and maintaining consistency among themselves, or is that the

responsibility of a client program? These integrity requirements are called integrity constraints

(37:53). An example of an integrity constraint is that every data element appearing in the Consists

Of Relation Manager mechanism must also appear as a member of the Data Element Manager

mechanism. If that is not the case, an integrity constraint is violated.

The decision to require the client program to enforce the integrity constraints is made for two

reasons: reduced coupling and greater flexibility. By requiring a client program to enforce these

integrity constraints, there is no requirement for any visibility between the manager mechanisms.

This reduces the mechanism coupling, but it also increases the complexity of the client program.

Greater flexibility means that one or more additional relationships and/or entities can be added

83



to the essential data model without requiring modifications to the other six manager mechanisms.

Thus, the end result is no coupling among the six manager mechanisms.

Figure 23 illustrates the relationships among the objects of the Essential Subsystem by show-

ing which objects communicate with one another via message passing. However, in order to classify

how each of the objects see one another (i.e., their visibility), it is necessary to add additional detail

to Figure 23. Therefore, Figure 24 illustrates a more detailed object diagram that includes not only

the relationships among the objects but also their visibilities.

Summary

This chapter presents the first three steps in the object oriented design process. The concepts

of key abstractions and mechanisms presented in (7) are extremely helpful in the proper classifica-

tion of the objects of the problem domain. Seven object classes based on the essential data model

are identified. In addition, object classes based on the data dictionary, the essential data model

(project) information, the interface to CLIPS, and error handling are also identified.

The mechanisms necessary for the management of multipls instances of similar classes are

discussed. Six different mechanisms are identified. The iterative nature of the design process is

reflected in two ways:

" The identification of the key abstraction Generic Multiple Object Manager during the process

of identifying the mechanisms for the essential data model.

* The identification of the key abstraction Error Handler during the implementation phase.

The output formats for both the essential data model information and the data dictionaries are

also presented.

The design of the expert system is also discussed. The state information of an IDEF0 model

is stored and restored in the form of CLIPS/Ada facts. Where past research efforts used only

84



Activity Data Historical Calls Consists Of ICOM
Manager Element Activity Relation Relation Relation

anager Manager Manager anager Manager

Figuen2.EsetalSbyseaetielDsg

Fact D85



OAV triples (20, 24), this research finds that representation insufficient and develops new fact

representation methods.

The interface to the CLIPS/Ada expert system is modeled by the CLIPS Working Memory

Interface object. This object uses the operations of the Essential_-Fact.Utilities object to obtain

the facts pertaining to the syntactical make up of an IDEF0 model and then transfers them to the

working memory of the CLIPS expert system.

A preliminary design is devised based on the functionality of the objects. The rationale used

in determining the design of the Generic Multiple Object Manager is then discussed. Of special

note is the capability of the manager to permit direct access to an item within the manager.

After discussing thL. visibilities and relationships among the objects, a more detailed design

. then presented. Coupling among the manager mechanisms is eliminated by placing the respon-

sibility for integrity constraints onto the client program.

86



V. IMPLEMENTATION, TESTING, AND INTEGRATION

Introduction

This chapter presents the implementation, and testing of the Essential Subsystem which

includes the CLIPS/Ada expert system.

The first section discusses the implementation of each of the packages which model the objects

of the Essential Subsystem. This is followed by a discussion of the expert system implementation.

The documentation standards and order-of analysis methodology are presented next. Finally,

testing and a limited discussion of the integration of the Essential Subsystem with SAtool II are

presented.

The Essential Subsystem Packages

In this section, the implementation for each package that is part of the Essential Subsystem

is discussed. The physical design of the Essential Subsystem is graphically depicted using module

diagrams.

A module diagram is used to show the allocation of classes and objects to modules in
the physical design of a system; a s!ngle module diagram represents all or part of the
module architecture of a system (7:175).

The module diagram of Figure 25 represents the architecture of the Essential Subsystem at the

highest level. The notation used in Figure 25 is a variation of that used in (7:175) and is included

in Appendix A. The directed arrows between modules indicates compilation dependency where the

module at the source of the arrow depends on the module at the destination of the arrow. Of

particular interest is the Environment.Types module, which all modules in the Essential Subsys-

tem depend on directly or indirectly with the exception of the Generic Multiple Object Manager.

Appendix A presents the entire physical design of the Essential Subsystem in a series of module

diagrams.

87



ESSENTIAL SUBSYSTEM(es-inain)

Corsist0Leation .anager Activit ..Mana ger

ICO RelaionMe ngerData..Element.Manager

Call-Reltio-MangerHistoria Ativiy ianager

Envirenmen.Ty >es Project-Manager

Figure 25. Essential Subsystem Top Level Module Diagram

88



Environment.Types. The package Environment-Types provides global base types, global ex-

ception handling variables, one operation, and some instantiations of the Generic Multiple Object

Manager. Each of these features has widespread use throughout the Essential Subsystem and

SAtool II as well.

Of particular interest are the several instantiations of the Generic Multiple Object Manager.

Each of the following manager classes is an instantiation of the Generic Multiple Object Manager.

" Data.BufferPackage. Instances of this manager class are used for managing multi-line fields

of 25 characters (e.g., multiple occurrences of activity names, data element names, etc.).

* TextBufferPackage. Instances of this manager class are used for managing multi-line fields

of 60 characters. The 'description' and 'changes' attributes of the activity class and data

element class respectively are implemented by instances of this manager class.

" Fact.Buffer.Package. As the name implies, instances of this manager class are used to manage

es3ential data model facts destined for either CLIPS Working Memory Interface or Essential

10. Facts extracted from a physical file by Essential 10 for restoring the data structures are

also managed in this mainer.

These i1ndger-cla&scs are ava;lible by any package or procedure with visibility to Environ-

mnrr.', ypcs. The reasoning for placing these manager classes in the Environment Types package

is the same as the reasoning for placing base t, pes in the package. These manager classes have

widespread use throughout the SAtool II system. By placing them in a "global" package, multiple

occurrences of identical Generic Multiple Object Manager instantiations are avoided and the size

of the SAtool II object file is reduced.

The Environment-Types package has compilation dependency ononly the Generic Multiple

Object Manager and the system Calendar package. Of special note is that all modules/packages in

89



the Essential Subsystem and SAtool II except the Generic Multiple Object Manager have direct or

indirect compilation dependency on this package.

Genet-ic.MultipleObjeci.Manager This generic package is a modified version of the software

component 'Queue Nonpriority Balking Sequential Unbounded Unmanaged Iterator' presented in

(5). Several significant changes are made to the component to fit the requirements:

" The passive iterator supplied with the component is replaced with an active iterator. The

source code for the active iterator can be found in (5:158).

* The procedure 'SetItem' is added to permit an item to be updated in place.

" The procedure 'Add' is modified to include the iterator type as an 'out' parameter which is

left pointing to the item just added.

" The procedure 'Remove.Item' now uses an access type in determining the item to delete. It

previously used a position number.

The Essential DL ia Model Object Classes. This discussion includes all the object classes

illustrated in Table 2 with the exception of the project class which is modeled as a simple type

within Environment-Types. Each of the classes is implementei with an Ada record type, but

there is no encapsulation of that type. Thus, each of the following six packages implements an

unencapsulated object class.

* Activity-Class

" Data-Element.Class

" Historical.Activity-Class

" CallsRelation.Class

" Consists.Of.Relation.Class

" ICOM.Relation.Class

90



The Essential Data Model Object Class Managers. As discussed in the previous chapter,

seven different object classes are identified from the essential data model. Because there exists

but one instance of the project class in the essential data model and SAtool II, its implementation

is different from the others. The package Project Manager simply encapsulates one instance of

the project class within its body. The project class itself is not included in the encapsulation

(i.e., its imple'nentation is not hidden within the body), since it is readily accessible fr:'n the

Environment-Types package. Therefore, the specification of Project Manager package consists of

only two operations:

" SetProjectName

* Value.OfLProject.Name

In effect, the above methodology results in the implementation of an Abstract State Machine. In

this context, an Abstract State Machine is considered to be the encapsulation of a single instance

of an object class where state information (i.e., the object) is retained in the package body (6:238).

In other words, there is only one objec4 of this type in the entire system that is being modeled.

However, the remaining six manager mechanisms are implemented in a very different manner,

because they manage more than one instance of an objec. class.

1. The Generc Multiple Object Manager package, which is a generic or parameterized class, is

instantiated with a particular object class. This results in the creation of an object class -

not an object. If only primitive operations were desired on this new object class, the process

could be halted here, and the user could simply declare an instance of the object class to

obtain a "simple" manager mechanism. However, this is not the case for the objects classes

from the essential data model, since more complex composite operations on the contents of

the managers are required.

91



2. The next step then is to declare an instance of the object class and encapsulate it. Since

there is no requirement for multiple managers of any one type, the manager itself is placed

within the package body. This results in an Abstract State Machine being implemented for

each of the six manager mechanisms.

The definition of an Abstract State Machine used in this research does not allow for the exporting

of any types (6:238), but due to the unique requirements of SAtool II, this rule is intentionally

violated for each of the manager mechanisms. Just as the Generic Multiple Object Manager exports

an iterator type that allows direct access to an item, each of the Abstract State Machines exports

a pointer type which permits direct access to an item within the Abstract State Machine. Each of

the following packages are therefore implemented as Abstract State Machines that export a pointer

type:

" Activity-Manager

" Data.ElementManager

" Historical.Activity.Manager

" Calls.RelationManager

" ConsistsOfRelationManager

" ICOM.Relation.Manager

EsseniialFactUtilities. The information that is stored in the manager abstract state ma-

chines represents the essential (fundamental) part of an IDEF0 model. As discussed in the last

chapter, this information.must be extracted from the managers for output to a file for permanent

storage or for input to the CLIPS/Ada working memory for syntax checking. The required format

for input to the ,--LIPS working memory is CLIPS facts. Thus, in order to conserve implementation

time, CLIPS facts are also chosen as the representation method for the o)utput file that stores the

entire essential data model (i.e., the project).

92



Thus, for each manager abstract state machine, two procedures are required: one procedure

to retrieve facts from the manager and another procedure that restores the facts back into the

manager mechanism data structures when SAtool II restores a project. All of these procedures for

all the managers are located in the EsseatialFact.Utilities package. The procedures are located in

a this common package because of their common functionality, and because some of the procedures

require visibility to more than one of the managers. The requirement for multiple visibility is the

reason that these operations are not part of the semantics (i.e., the methods) of their respective

managers. Otherwise, if the operations are part of the object semantics, increased coupling among

the managers would result. Consequently, to reduce the coupling among the managers, these

procedures are implemented as free subprograms or utilities (7:126) and placed in a separate package.

The medium by which facts are transferred into and out of this package is an instance of the

Fact.Buffer.Package that is located in the Environment-Types package. Therefore, client programs

either get a buffer of facts from a procedure in this package or they pass a buffer of facts to a

procedure in this package.

For example, EssentialFact-Utilities has two procedures related to the ICOM.RelationManager

abstract state machine.

9 Retrieve-ICOMFacts. This procedure first examines the input parameter'Type Facts Flag'.

Based on the flag setting (True or False), the procedure retrieves one of two different sets

of facts and inserts them into another parameter, 'Fact Manager', which is an instance of

the Fact.BufferPackage. If the flag is true, only facts for the expert system are inserted in

the 'Fact Manager'. If the flag is false, only the facts necessary to permanently store the

state of the essential data model (i.e., the IDEF0 model) are inserted into the Fact.Manager.

This procedure is invoked by a client program whenever the user saves the project he/shc

is working on, or when the user wishes to check the syntax of the project (i.e., the current

IDEFo rr -del).

93



9 RestoreICOM-Facts. This procedure accepts as input a buffer of icom facts representing

state information. These facts are retrieved from a file by the 'Restore Project' procedure

in the Essential.IO package. These facts are then restored into the ICOM.RelationManager

by this procedure. This procedure is normally executed as one of a sequence of events in the

initialization of SAtool II when a previous project is loaded from disk.

Similar pairs of procedures for each of the manager mechanisms exist within the Essen-

tialFact.Utilities package. See Appendix A for a list of the procedures not yet implemented in this

research.

CLIPS.WorkingMemoryInterface. This package provides the interface for the Essential

Subsystem to the CLIPS/Ada expert system. It is the only package in SAtool II that has visi-

bility to the CLIPS/Ada expert system operations. This visibility is achieved by the context lause

"with EmbeddedClips;" (32:17). This context clause permits the CLIPS Working Memory In-

terface package to have direct access to the actual working memory of the expert system via the

operations found in the specification of the Embedded-Clips package.

The following procedures are included in the CLIPS Working Memory Interface package

specification:

" Initialize-Clips. This procedure is an initialization procedure that must be executed prior to

any of the other operations associated with CLIPS/Ada.

" Assert.All.Facts. This procedure calls each of the 'retrieve' operations in the Essential.FactUtilities

package. It controls the retrieval of the facts and their assertion into the CLIPS/Adaworking

memory.

* Display.All.Facts. This procedure simply displays the contents of working memory.

* Execute.CLIPS. This procedure begins the recognize-act cycle of the CLIPS/Ada forward

chaining inference engine.

94



* Clear.CLIPS. This procedure clears the working memory of CLIPS/Ada.

At this time, only a subset of the essential data model information is loaded into the working

memory for" syntax checking by the procedure Assert All Facts. Appendix G presents a script file

that shows the subset of facts that are loaded.

Essential.IO. This package provides the necessary operations for SAtool II to store essential

data model in a file and to load essential data model information from a file into the managers.

The following operations are included in the EssentialIO package specification:

• Save.Project. This procedure controls the storing of the IDEF0 model state information to a

file. It obtains the state information by calling operations within the Essential Fact Utilities

package.

• Restore.Project. This procedure controls the restoring of a project from disk to the Ada data

structures. Again, several operations within the Essential Fact Utilities package are used to

load the information back into the Ada data structures which represent the managers. Note

that the project information, in this case, is only essential data model information. The

storage and retrieval of drawing information is to be handled by a separate package (40).

All of the state information from the Project Manager and the ICOM Relation Manager can

be retrieved and restored by these operations. In addition, a small subset of the information stored

in the Activity Manager is also retrieved and restored. However, no state information from the

other five managers is currently handled.

Appendix F presents the output file format for a sample IDEF0 model. The state information

in this file is represented as CLIPS/Ada facts and illustrates the subset of state information facts

that the Essential Subsystem currently captures.

95



Data-Dictionary. This package provides operations to create an ASCII text representation

of either an activity data dictionary entry or a data element data dictionary entry. Operations are

also provided to output all data dictionary entries to file for both activities and data elements. As

stated in the last chapter, this output can be used as an alternative means for storing the state

information. However, procedures to restore the state information from the data dictionary entries

would then have to be developed and added to the EssentialIO package.

Unfortunately, time constraints prohibited the implementation of this object. However, Ap-

pendix A presents some ideas on how to possibly implement this object for future research efforts.

Error-Handler. The Error Handler object is the single focal point within SAtool II for error

handling. There is one error handler object for the entire SAtool II system. However, because

integration with SAtool II is not accomplished, a separate version of the error handler object is

to be created for use within the Essential Subsystem alone. Upon integration with SAtool II, the

error handler from this research and (40) are to be merged into a single object.

The error handling methodology used is the same for all packages in SAtool II. There are four

global variables within the Environment-Types package: 'error number', 'error location', 'known

exception occurred flag', and 'unknown exception occurred flag'. In addition, each package in

SAtool II also has a corresponding exception naming that package within Environment-Types.

Whenever an exception occurs in any procedure of any object, the procedure updates those variables

to reflect the type of exception that has occurred and then, it raises the package exception in the

Environment-Types package. This exception then propagates to the SAtool II main program which

invokes the Error-Handler object. Its function is to examine the contents of the global variables,

inform the user of the problem, and then take the appropriate action based on the user response.

Due to time constraints, this package is not implemented. However, additional information

on the package implementation can be found in Appendix A.

96



Expert System

The implementation of the expert system is highly dependent on the implementation of the

Essential.FactUtilities package, because the package contains the operations necessary to convert

the IDEF0 model state information into CLIPS/Ada facts. As explained in Chapir.- Four, the facts

destined for the working memory of the expert system may have different information than those

facts that represent the state information.

This difference is illustrated by comparing the file presented in Appendix F, which contains

facts for state representation, to the script file in Appendix G which includes a display of the

syntactical facts of nearly identical IDEF0 model.

The following list illustrates those syntactic facts of an IDEFO model that the Essential

Subsystem can currently retrieve:

1. The activity name of each activity in the model.

2. The number of input, output, control, and mechanism arrows for each activity.

3. The project name.

4. The description and activity number for each activity.

5. The activity hierarchy in terms of parent - child relationships.

6. The relationships between every activity and every data element in the model.

The knowledge (rule) base of the expert system is presented in Appendix D. Appendix G

presents a script file that illustrates the syntactical checking of the IDEF0 model shown in Appendix

F, except that the version checked in Appendix G has been slightly modified to introduce a few

errors. The following list illustrates the syntactic features of an IDEF0 model that the Essential

Subsystem can check via the rule base that is depicted in Appendix D:

97



1. The number of input, output, control, and mechanism arrows for each activity are checked

to insure a valid number of them are in place.

2. The description and activity number of an activity are checked for their presence.

3. The project name is checked for its presence.

Obviously, the implementation of this small subset of rules is rather simple. However, time

constraints prohibited expanding the rule base any further within the available research time.

However, the feasibility is adequately demonstrated.

Documentation Standards

The documentation standards in the System Development Documentation Guidelines and

Standards Draft # 4 (16) are intended for doc: menting a system based on a functional design

approach. Standards are provided for file headers and for Module/Subroutine/Procedure headers

(16:32-35). Although the file header format is adequate, the Module/Subroutine/Procedure header

standard is not sufficient for an Ada based object oriented design. Specifically, there is no standard

for documenting objects which, in Ada, are commonly implemented by a package. In addition, the

Module/Subroutine/Procedure header standard does not include a requirement for including the its

order-of. Therefore, Appendix E presents a modified version of the Module/Subroutine/Procedure

header format and a new header format for use with packages. Both formats are used to document

the source code presented in Volume II of this research. Furthermore, in order to increase the

maintainability of the source code, the Ada USE clause is strictly avoided. Thus, all subprogram

calls are explicit in their package origin.

98



Order Of Analysis

The term order of in this context refers to the order of magnitude in terms of time complexity

for a given program. For the worst case or 'upper bound' time complexity, the Big-O notation is

used (26).

Big-O Definition:
A function f(n) is of order O(g(n)) if and only if thure exist constants, c > 0 and no _ 0,
such that

f(n) _ cg(n) Vn > no

f(n) = O(g(n)) says that g(n), multiplied by some constant, c, gives an upper bound
on f(n). (26)

A "complete" order-of analysis requires that each statement or block of statements of a pro-

gram be approached separately for analysis. The order of for the entire program is then determined

by combining the results of earlier analyses to obtain the overall Big-O (1:21-26). Any individual

subprograms contained in the program are decomposed into smaller blocks of code to simplify their

order of analysis. This process is categorized as an "inside-out" approach to program analysis.

The 'program' of concern in this case is the Essential Subsystem Test and Demonstration Program

which is primarily a menu program to model the SAtool II graphical user interface. However, this

program is developed solely for testing and demonstration purposes and will not be part of the

final SAtool 11 tool. Therefore, the order of analysis is performed only on those subprograms that

will eventually be part of SAtool II. The results of the analysis are embedded as comments within

each of the subprogram headers as well as the subprograms themselves.

Table 4 provides a sample of the time complexity of some of the operations within the Essential

Subsystem. In this case, for each package, the operation with the greatest time complexity is

illustrated. Where there are multiple operations with the same apparent maximum time complexity

in a package, an arbitrary choice is made. Of special note is that in the worst case only cubic time

99



Table 4. Greatest Time Complexity Per Package

Package.Operation Time Complexity
Activity.-Manager.Create-Activity 0(a * z)
Data-Element.Manager.Create.Data-Element 0(d)
HistoricalActivity.Manager.CreateHistorical.Activity 0(h)
Calls.Relation..Manager.Create.Calls-Relation.Tuple 0(c)
ConsistsOLRelation.Manager.Value.OfConsists.Ofld 0(s * s * k)
ICOM.Relation-Manager.CreateICOM.Relation.Tuple 0(i)
ProjectManager.Set.ProjectName 0(1)
Essential.FactUtilities.RestoreActivity.Facts 0(a * maz(z, z * (a * z)))
EssentiallO.RestoreProject 0(maz((i * i), a * ma (x, z, (a z

Table 5. Order-Of Variables

Variable Meaning
a The number of activities in the Activity Manager
d The number of data elements in the Data Element Manager
h The number of Historical Activities in the Historical Activity Manager
c The number of Calls Relation Tuples in the Calls Relation Manager
s The number of Consists Of Relation Tuples in the Consists Of Relation

Manager
k The number of components of a data element
i The number of ICOM Relation Ttples in the ICOM Relation Manager
x The number of lines in an activity's description
z The number of children activities that an activity possesses

is exhibited. Table 5 defines the variables used in Table 4. Table 6 presents a summary of the

order-of results for all of the 117 operations of the Essential Subsystem.

Note that the Clips Working Memory Interface package is omitted from Table 4, because its

procedures make direct calls to CLIPS/Ada operations whose analysis is not part of this research.

Thus, the order-of for each of the operations in the package is unknown. This also accounts for five

of the six "unknown" operations in Table 6. The other operation of unknown time complexity is

the 'Get Date Time Stamp' operation contained in the Environment Types package which calls an

operation within the system dependent Calendar package.

100



Table 6. Greatest Time Complexity Per Package

Time Complexity Number of Operations
Cubic Time 2
Quadratic Time 11
Linear Time 37
Constant Time 61
Unknown 6

Testing

A bottom-up, incremental approach (39:410-413) to testing is used in this research. This

approach is used for two reasons. First, the most critical objects implemented are the manager

objects which hold the IDEF0 model state information. These objects are at the lowest level in

terms of visibility within the physical design. Since the lowest level objects are implemented first, a

bottom-up approach to testing is considered most applicable. Second, a top-down approach is not

feasible in this case since the "top" of SAtool II is already under development in other research (40).

Testing for the Essential Subsystem begins immediately after the first unit (subprogram) is

implemented and continues past the implementation of the last module. Thus, the testing phase

significantly overlaps the implementation phase of the Essential Subsystem.

The bottom-up testing methodology is followed by constructing a driver program (es-main)

that provides the necessary input to the modules and units to be tested. Once es-main is con-

structed, a module is chosen for implementation, and a corresponding menu of its operations is

added to es.rmain. Each of these operations is stubbed out at the beginning. As each unit of the

module is implemented, its stub is replaced by the actual operation and is tested.

Thc incremental approach is used once all the operations of 1,he first module are imple-

mented. Instead of creating another driver program for the second module, the same driver pro-

gram (es.main) is used by adding another menu of operations. In. this manner, an incremental

build of the Essential Subsystem occurs as each subsequent module is implemented. If the module

101



just added communicates with (i.e., has any relationshipi with) any of the other modules already

added, these relationships are tested. Since the interface to the expert system is modeled by the

CLIPS Working Memory Interface package/module, the testing of the expert system occurs when

the relationships of the CLIPS Working Memory object are tested.

Once all the modules (objects) are implemented and tested, the test program (es.main)

doubles as both a demonstration program and a validation program.

Due to the time constraints imposed on this research, the testing that is performed is primarily

functional in nature. Some limited boundary testing is performed, especially for the menu input

routines, However, formal testing in terms of statement coverage, codepath coverage, etc. is not

performed. In addition, a formal proof of correctness is considered outside the scope of this research.

Instead, sample IDEF0 models are created and loaded into the Essential Subsystem. Several of

thse models are created and manipulated by the program to validate that no unexpected results

occur. Appendix G presents one of the functional test cases and the results of the test.

Integration wilh SAtool 11

Had additional time been available for this research and the concurrent research (40), the

integration of the Essential Subsystem with the remainder of SAtool II could have proceeded.

Instead, the Essential Subsystem Test and Demonstration Program is developed which models

some of the functionality of SAtool II. Some of the available functions can be seen by examining

the script file presented in Appendix G. However, a full appreciation of the multitude of available

operations can not be achieved without examining the source code in Volume II of this research.

The outermost menu of choices for the Essential Subsystem Test and Demonstration Program

attempts to model some of the "mouse selections" that would be available through the graphical

user interface of SAtool II. The GUI for SAtool II is illustrated in Figure 26 which depicts the

overall architecture of SAtool II. The program menu choices "Add-Box" and "Connect-Two.Boxes"

102



implement operations that are considered part of the layer below the GUI - "The Inter-Model and

Intra-Model Macro Operations and Project Integrity Constraint Management" part of SAtool II. It

is this part of SAtool II that enforces the integrity constraints that are discussed in the Relationships

and Visibilities section in Chapter Four.

The series of inner menus in the Essential Subsystem Test and Demonstration Program per-

mits the user direct access to the Essential Model section and the File and Expert System Utilities

section of the SAtool 1I architecture shown in Figure 26. Of course, once full integration is achieved,

such access should definitely be prohibited.

Sum mary

This chapter presents the implementation and testing of the Essential Subsystem which in-

cludes an Ada based expert system.

The implementation of each of the objects in the Essential Subsystem is discussed. A module

diagram is ustid to illustrate the highest level in the physical design of the Essential Subsystem.

The implementation of the object class managers as Abstract State Machines is also discussed.

The implementation of the expert system is also discussed. Only a limited number of IDEFo

syntactic features are checked, because time constraints prohibited the development of all the

necessary fact retrieval operations.

The documentation standards are augmented with a revised subroutine header and a new

package header format. Both formats are used throughout this research and are presented in

Appendix E.

The order of for each and every subprogram in the Essential Subsystem is performed with

the exception of those subprograms implemented for testing and demonstration purposes only and

the subprograms in the Clips Working Memory Interface package. A partial order of analysis is

performed for these operations because the order of for the CLIPS/Ada operations is not provided in

103



User

Graphical User Interface Error

Handler

Inter-Model and Intra-Model Macro Operations and

Project Integrity Constraint Management

File and Complex

F.-sential Expert Drawing Drawing MAGSE

Model System Model Objects (Machine
Independent

Utilities Ada Graphical
Support
Environment)

(40)

Figure 26. SAtool II Overall Architecture

104



the documentation. Time constraints prohibited performing an order of analysis for the CLIPS/Ada

operations. The order of analysis for all the operations is documented using the Big-O notation (26).

Testing is performed in concert with the implemert ilion. As each unit is created, it is added

to a module within a test program (es.main). When all the units of a module are completed, the

first unit of the next module is then implemented. Any relationships that exist between modules are

tested as the units of the module are added. Thus, an incremental build of the Essential Subsystem

is accomplished using a bottom-up approach.

Because time constraints prohibited the full implementation of the Essential Subsystem and

thus integration with the rest of SAtool 11 (40), the Essential S,:bsystem Test and Demonstration

Program was implemented to demonstrate some of the proposed functionality of SAtool II.

105



VI. SUMMARY, CONCLUSTONS, AND RECOMMENDATIONS

Introduction

This chapter first presents a summary of this research investigation. Conclusions about the

research and recommendations for further work are also included.

Research Summary

This investigation resulted in several accomplishments in relation to the design and imple-

mentation of the Essential Subsystem for SAtool II:

" A revised IDEFO Essential Data Model was developed. This included a revised IDEF0 Activity

Essential Data Model and a revised IDEFO Data Element Essential Data Model.

* A revised AFIT Data Dictionary Format was developed. This included revised data dictionary

entry formats for both an activity and a data element.

" An object oriented design of the Essential Subsystem was developed which demonstrated the

following:

- An entity relationship diagram can be used as the basis fr an object oriented design.

- Relationships in an entity relationship diagram can be modeled as objects in an object

oriented design.

- The design of an expert system can be integrated with the object oriented design process

by modeling the interface to the expert system as an object.

" An implementation of the Essential Subsystem design called the Essential Subsystem Test

and Demonstration Program was developed which demonstrated the following:

- The feasibility of using of Ada and object oriented design techniques in the implemen-

tation of a CASE is possible.

106



- The feasibility of using Ada for an expert system is possible.

- The feasibility of representing the state of an IDEFo model as CLIPS facts, and the

feasibility of representing the syntactical features of an IDEF0 model as CLIPS facts are

both possible.

In the process of making the above accomplishments, several critical design and implementa-

tion decisions were necessary:

* The most critical decision is the viewpoint from which the problem is observed. The outside

view' of an IDEF0 can result in one object with many component objects. The view chosen for

0', r,'-.arch is an inside view which results in the many objects that are part of the design.

" The decision to select the inside view permits the retrieval of state information to be much

simpler, since the information is not embedded within the structure of a single object as it is

for the outside view.

" The joint design decision (40) not to permit visibility between the manager objects within

the drawing model (SAtool II) and the manager objects within the essential model (Essential

Subsystem) is significant. Furthermore, no manager within the drawing model has visibility

to any manager in the essential model and vice versa. This decision eliminates coupling

among the manager objects but increases the complexity of the client program that must

manipulate the objects, because the responsibility for maintaining the integrity constraints

among the objects is exported to the client program. In this case, the client is the layer just

below the Graphical User Interface layer of SAtool II shown in Figure 26.

" The decision not to encapsulate the essential data model object classes permits a layer of

abstraction to be removed.

107



" The decision to allow direct access to the items stored in the manager mechanisms is a

violation of the principles of information hiding and encapsulation. However, it reduces the

time complexity of some operations to 0(1) time.

" The decision to model some 'many to many' relationships in an entity relationship diagram

as objects permits the manager mechanisms to be implemented with no coupling among

themselves.

" The decision to store the state information of an IDEF0 model as CLIPS/Ada facts is made

primarily due to time constraints.

Conclusions

The review of both the abstract data model of the IDEF0 language and the associated data

dictionary formats prove to be worthwhile, since several inconsistencies and inadequacies are iden-

tified and corrected. Without identifying and correcting these deficiencies early in the research,

serious design and implementation problems would have resulted.

The partitioning of the essential model information from the drawing model information

continues through the design and implementation pilase. This shows that the partitioning of the

IDEFO language by the IDEF0 Abstract Data Model does, in fact, correctly model the separation

of the essential (fundamental) information of an IDEFo model from the drawing information of an

IDEFo model.

An entity relationships diagram can be used as the basis for going from the requirements

phase to the design phase of the software development life cycle. However, the technique devised

in this research for mapping E-R constructs to objects in an OOD can not be applied to any ERD.

The methodology only includes techniques for those E-R constructs that appear in the abstract

data model of the IDEFo language. Even if similar E-R constructs appear in another E-R model,

it is not clear whether this technique can be applied.

108



The modeling of relationships as objects reduces coupling among objects. Coupling ran be

eliminated entirely if the responsibility for maintaining the integrity constraints among related

objects is exported to the client program. If that responsibility is not exported, coupling is reduced

to a lesser degree.

The Generic Multiple Object Manager is used in the creation of several abstract state ma-

chines that violate the principles of encapsulation and information hiding. These violations are

the result of the unique requirements of a CASE tool and not inherent to the generic manager

itself. In other words, components that do not violate encapsulation and information hiding can be

developed with the generic manger, but the generic manager also permits those rules to be violated

if the user so desires. Its flexibility is its greatest characteristic.

Both this research and concurrent research (40) demonstrate that Ada can be used in the

development of a CASE tool. The use of an object oriented design approach to CASE tool devel-

opment is also shown to be successful.

The feasibility of Ada in expert system development is clearly evident, since CLIPS/Ada is

readily available as a public product as well as being available to the gover:ment for free. Its use as

an integral component of a CASE tool is demonstrated by the CLIPS Working Memory Interface

object which implements an interface between the Essential Subsystem and CLIPS/Ada.

This research shows that the entire hierarchy of an IDEF0 model can be represented by a

single implementation of an object oriented design. An earlier version (19) of SAtool only permits

a single diagram to be modeled in a single session. Thus, multiple sessions are required to create

an entire IDEFO model. A later version (38) appears to incorporate the necessary activity and data

element hierarchy but does not correctly model the multiple decomposition of data elements nor

the multiple source-destination relationships among activities and data elements.

During this research, a methodology for performing order-of analysis as well as copious com-

menting of the source code was used as source code was developed. Although the additional docu-

109



mentation did impact on the amount of source code produced, the resulting documentation, which

includes the source code itself, will be much more maintainable and understandable in follow-on

research efforts.

Recommendations

Unfortunately, this research effort did not conclude with an integration with SAtool II that is

under concurrent development (40). This is strictly due to the time constraints that are naturally

imposed on most research efforts. Therefore, the most obvious recommendation is to nerform the

integration between the Essential Subsystem and SAtool II.

The objects derived directly from the Essential Data Model are fully implemented with the

exception the minor changes required to implement the Error Handler object. Some of the other

objects that are part of the Essential Subsystem are not fully implemented and others are not

implemented at all. Again, this is simply due to time constraints. Appendix A describes the

remaining work that should be accomplished to complete objects in the Essential Subsystem.

The EssentialIO restore operation, as well as the all the Essential.Fact.Utilities restore op-

erations, require that the some of the fields of a fact be in a specific position within the fact string.

In other words, if the fields are not in the correct columns, the facts may be rejected. To elimi-

nate the dependency on columns and make the operations more flexible, these operations should

be modified to parse the strings for the individual fields of data. Even greater flexibility in fact

representation can be realized in the aforementioned routines are modified to accept facts in any

sequence instead of the rigid sequence that is currently enforced. However, this flexibility could

result in performance drawbacks, since each and every fact would have to be checked to determine

its type.

Now that boch the essential data model and drawing data model state information are in a

"commercial" file standard (i.e., CLIPS facts), applications can be more readily developed for them.

110



For example, CLIPS rule based production 3ystems could be written to analyze and manipulate

the IDEF0 facts. In other words, a CLIPS rule base could be developed to modify the IDEFO

model information represented by CLIPS facts. Then, executing the rule base would modify the

facts, creating a new model. Those facts could then be restored back to the Ada data structures.

However, this option only becomes feasible if a feature for automatic IDEFo diagram generation

from essential data model information is implemented, since the IDEFO drawing model information

would no longer be compatible with the modified IDEF0 essential model information.

The size of CLIPS/Ada may be of concern when integration with SAtool II is performed. The

current size of the Essential Subsystem Test ind Demonstration Program is over 1.3 megabytes of

which CLIPS/Ada appears to be a significant part. Therefore, either the size of the CLIPS/Ada

expert system should be reduced by the means discussed in (32:50-52), or another Ada based expert

system such as the one presented in (4) should perhaps be employed.

There are several recommendations for the expert system portion of the Essential Subsystem:

" Complete the knowledge/rule base of the expert system to check all the syntactic features of

an IDEFo model.

* Expand the rule base to include rules to check drawing information. For example, the position

of the boxes on the diagram could be checked to see if "dominance" (36:20) is implemented.

" Experts use certain heuristics in determining whether the specific decomposition of a system is

"good" or "bad" which is unrelated to the syntactical correctness of the model. For example,

by visualizing the IDEF0 model as a tree structure, the height of the various branches of

the tree could be examined. In other words, the "balance" or lack of balance in the IDEFo

hierarchy could be one heuristic in identifying areas of concern.

" Expand the knowledge base of the expert system to include knowledge about the specific

application being developed. Are there rules or certain syntactical features that are unique

111



to certain types of systems? Again, future research into this area is the only way to answer

the question.

0 Can a computer successfully recreate one or more of the drawing models with only the essential

data model information, or is there some key construct missing from the essential data-model?

One way to answer this question is to attempt to develop an algorithm for converting the

information in the essential data model into drawing model constructs. If such an algoritilm

can be developed, it will demonstrate that the essential model does, in fact, contain sufficient

information to recreate one or more physical IDEF0 diagrams that represent the model.

There should be a methodology developed to automatically update the version number and

date of an activity or data element whenever either is modified. The responsibility for performing

the updates can be exported to the client program, or it can be built into the ActivityManager

and DataElement.Manager.

CLIPS stores all numbers as real numbers in working memory which can be seen in Appendix

G. This representation currently poses no problems, because only a couple of rules are written that

match with the real numbers. Additional rules will have to written eventually, however. Thus,

this potential problem should be examined as soon as possible by developing additional rules that

match on the number fields of the IDEF0 facts.

The concept of data elements having subtypes is stated but not shown in (30:3-7). However,

the use of subtypes is explicitly shown in (15:17-26). As currently implemented, the Consists Of

Manager considers a decomposition to be its subcomponents, but it has no way of determining that

it has been supplied with subcomponents or subtypes. The explicit modeling of subtypes would

resolve this problem.

112



As stated at the conclusion of Chapter Three, it was not the purpose of this research to

fully analyze and correct the IDEF0 Essential Data Model and the corresponding data dictionary

formats. Obvious inconsistencies and inadequacies were identified and corrected. He .ver, it is

suggested that additional research be performed to determine if the models resulting fromn these

changes are, in fact, free of any further inconsistencies or inadequacies in modeling the IDEF0

language.

113



Appendix A. ESSENTIAL SUBSYSTEM PHYSICAL DESIGN

This appendix presents the physical design of the Essential Subsystem. The notation used

to present the design is a variation of that used for the module diagrams presented in (7:175) and

is shown in Figure 27. Since the design presented here is not fully implemented, the status of the

individual modules is also discussed.

The series of module diagrams that follow depict the physical structure of the Essential Sub-

system. Some of these modules are implemented strictly for testing and demonstration purposes

only and will be replaced by operations contained in the Satool II GUI under concurrent develop-

ment (40). These modules are clearly marked by a 'T' embedded within the module itself. For

example, the Essential Subsystem module (es-main) is primarily a menu program.

Any module that has not been implemented is clearly marked with an 'N' as indicated in the

module diagram notation. Time constraints prohibited their implementation. These modules are

as follows:

* Error-Handler. Note that the implementation for each package will have to be modified in

order for this package to be effecrive. In other words, the 'exception' part of the opera-

tions contained in each package must update the global error handling variables contained

in the EnvironmoutTypes package. If another means for handling exceptions is desired,

the Error-Handler object can be omitted, but some error handling methodology should be

implemented.

* Data.Dictionary. The implementation for this object can be handled in at least two different

ways. It can be implemented as an encapsulated object class whose instance is a single data

dictionary entry. It can also be implemented as a group of utility operations that can create

both a single data dictionary entry or create a file of multiple.data dictionary entries, This

file could then be used as an aiternative method for representing the state information of the

Essential Subsystem if desired.

114



S1 i Package Specification

and Body

r - "1

Package Specification L _ _ Generic Package
r- -
L..J.J I

II
II
L _ ..--.-

Module Legend

'T' Module is for testing and demonstration purposes only.

'G' Module is "global" (i.e., it is with'd in by all other modules

on the same diagram.

'N' Module not implemented.

Figure 27. Module Diagram Notation

115



Some of the modules depicted in the physical design are not fully implemented. The following

modules require additional work:

* EssentialFactUtilities. The operations 'Retrieve Activity Manager Facts' and 'Restore Ac-

tivity Manager Facts' currently only retrieve and restore the same small subset of Activity

Manager information. The activity name, number, description, and parent-child relationships

are the only facts retrieved and restored. The remaining facts contained in the Activity Man-

ager need to be included as well. Retrieving and restoring operations need to be developed

for the following managers:

- DataElement.Manager

- ConsistsOf-Relation.Manager

- Historical.ActivityManaver"

- CallsRelationManager

Operations for retrieving and restoring the information contained in the ICOMRelation..Manager

and the Project-Manager have been fully implemented.

9 ClipsWorking.MemoryInterface. No additional operations are required. However, the op-

eration AssertAll-Facts needs to be modified to retrieve all the facts from all the managers.

This can only be done once the Essential.Fact-Utilities package is completed.

9 Essential..O. No additional operations are needed. However, both of its only operations,

'Save Project' and 'Restore Project', must be modified once all the Essential.FactUtilities

operations are completed. Currently, the operations are limited to saving and restoring a

small subset of the necessary facts to capture all the essential information in an IDEF0

model. Like the ClipsWorkingMemory.Interface package, the operations here can only be

completed once all the fact utility opeiations are complete.

116



In order to present a complete picture of the physical design of the Essential Subsystem,

the top level module diagram is repeated here. Note that the compilation dependencies among

the objects (other than those associated with es-main) are not shown in Figure 28. However, all

subsequent module diagrams depict all the dependencies among all the modules in the diagram.

Of special note is the implementation for the Project Manager depicted in Figure 39. Its

implementation differs from the other managers. The absence of a 'Project Class' module is due

to the fact that the project class is simply a type with a single field and is contained within the

Environment.Types package. Also, the Essential Subsystem, at this time, does not permit more

than one project at a time. Thus, there is also no requirement for the Generic Multiple Object

Manager. This diagram also depicts the implementation of the Environment.Types package.

117



ESSENTIAL SUBSYSTEM(es..main)

Consistsf .eainanager Activity -Manager

lCO agerData..Element-Manager

Call-Reltio-MangerHistorica Atvi anagor

Environrnent..T )es Project-.Manager

G

Figure 28. Essential Subsystem Top Level Module Diagram

118



Menu.1O

T

Environment-.Types

Figure 29. Module Diagram for MenuJO

119



Essentii.ZO

Essential-Fact..Utilitiles

Environment-Types

Figure 30. Module Diagram for EsseritialO

120



Clipa..Workin Meoynte ce

Essential..Fact-Utilities Embedded-Clips (a CLIPS/Ada package,

Environment-.Types

Othr IPS/Ads packages

Figure 31. Module Diagram for Clips..Working..Memoryinterface

121



EssentiaI..Act.Uti i ties

Consists.fRelation -Manager Activity-Manager

ICOM..Relation..Manager n-ta..Elemnt.Manager

Calls..Relation..Manager Historical..Activit M ager

Environment-.Types Project.Manager

Figure 32. Module Diagram for Essential-Fact..Utilities

122



------ -----

Activity-.Manager

Actii .l Generic..Multi.2I1.Qbielt anager

-i-.

Environment-.Types

Figure 33. Module Diagram for Activity-.Manager

123



Data.Elementdvlanager

Generic..Multij~lIQbil~aae

, I >

Environment-T pes

Figure 34. Module Diagram for Data-Element-Manager

124



ICOM..Relation..Manager

ICON..Relation-Class Generic..Multiple.Object,.anager

II

L ------

Activitv..Class Data.Element-Class

Environment-Types

Figure 35. Module Diagram for ICQM-Relation.Manager

125



Historical.Activity-Manager

Histric]L-Ativty- assGeneric..Multiple-Object.Manager

L J

L ----

Ativit .Class

Environment-Types

Figure 36. Module Diagram for Historical-Activity-Manager

126



CaIls..Relation..Manager

Call~eltia..CassGeneric..Multiple-Object.Manager

r -
r I1
L J-

Histori aL.Activity-Class

Activt-as

1 M 5 Environment-.Types

Figure 37. Module Diagram for Oalls.JRelation..Manager

127



ConsiAStfRelationMutiager

Consists-Of.Re~ation-Class
Generic..Multiplie(IjEct.Manager

r---

r I1

Data-Element-Ciass

Environment-.Types

Figure 38. Module Diagram for Consists-OL.Relation-Manager

128



Project.Manager

Environment-Types

Generic..Multip ejct-Manager Calendarr-

r( .I IC _-:

L

L ------

Figure 39. Module Diagram for Project-Manager and Environment-Types

129



Appendix B. ESSENTIAL SUBSYSTEM CONFIGURATION GUIDE

This appendix presents information concerning both the source code and configuration of

the Essential Subsystem. The source code for the Essential Subsystem (excluding the CLIPS/Ada

source code) can be found in Volume II of this thesis which is maintained by the Air Force Institute of

Technology, Department of Electrical and Computer Engineering. See Appendix C for information

concerning the CLIPS/Ada source code.

Of special note is the amount of disk space required for the Essential Subsystem. A total of 8

to 8.5 megabytes of free disk space is required for the Essential Subsystem to compile. This includes

space for all the source code (including the CLIPS/Ada source code), the Ada library files created

during compilation, and the Essential Subsystem executable. The Essential Subsystem executable

is currently approximately 1.3 megabytes in size. However, much of this size can be attributed to

the CLIPS/Ada expert system code.

To facilitate and document the compilation order for the Essential Subsystem, a shell program

is developed to compile all the modules of the Essential Subsystem. rhe following shell program,

'shell-compile.satool2', not only documents the compilation order but also the contents of each of

the source code files of the Essential Subsystem. Note the warning contained in the shell file that

requires the CLIPS/Ada source code to have already been compiled.

# This is a unix shell file to compile the Essential Subsystem
# code. The following command invokes the compilation:
# Execute this file by typing "csh shell-compile-satool2".

# Warning: In order for successful compilation to occur,
# the CLIPS/Ada source code must have already been compiled.
# A separate shell program performs that function. The code
# must be compiled, because the package ClipsWorkingMemory_
# Interface in the file es.clpwm.a requires the subunit
# Embedded-Clips which is part of the Clips/Ada source code.
*

# The names and contents of the files included in this shell are:

130



# es..genev a Package Generic-.Multiple-.Obj ectiManager
# Package Environment-.Types

# es-.activ.a Package Activity-.Class
# Package Activity-M.anager

# es-.datel.a Package Data-.Element-.Class
# Package Data-.Eleent-Manager

# es..proj .a Package Proj ect..Kanager
# es-.hista.a Package Historical-.Activity.Class

#Package Historical-Activity-M.anager
# es-calls.a Package Calls-.Relation-~Class

#Package Calls.Relation-.Manager
# es-.conof.a Package Consists-.Of-Relation-.Class

#Package Consists-.Of-.Relation...anager
* es-.ICOH.a Package ICOM-.Relation-.Class

# Package ICOMjtelationiManager
# es-factu.a Package EssentialFact-.Utilities
# es-.clpwm. a Package Clips..Working-Memory-.Interface
# es-esmio.a Package Essential-10I

# ****These files contain modules used for testing and
# ****demonstration purposes only:

# es-mnuio.a Package Menu-.IO
# es-main.a Subprogram es..main

# **************START THE EXECUTABLE COMMANDS**************
# This is the compilation order:

# Level I files:
echo Compiling Level I file
ada es-.genev.a

# Level 2 files: These files can be compiled in any ordei.
ec.wo Compiling Level 2 files
ada es...activ.a
ada es-.datel.a,
ada es..proj.a

# Level 3 files: Compile in any order.
echo Compiling Level 3 files
ada es..hista.a
ada es-.ICOM.a
ada es-.conof.a,
ada es-.mnuio.a

# Level 4 file:
echo Compiling Level 4 file
ada es..calls.a

# Level 6 file:
echo Compiling Level 5 file

131



ada es-fac1tu.a

# Level 6 files: Compile in any order.
echo Compiling Level 6 files
ada es-.esmio.a.
ada, es-.clpwm.a

# Level 7 file: Compile last.
echo Compiling Main program
ada es-.main.a.
ada -M es..main.a.

132



Appendix C. CLIPS/ADA CONFIGURATION GUIDE

CLIPS/Ada is an Ada version of CLIPS which has all the original functionality of CLIPS with

a few exceptions. These exceptions and other information concerning CLIPS/Ada are contained

in a "README.TXT" file that comes with the CLIPS/Ada source code. Although implemented

in Ada, the design of CLIPS/Ada is strictly functional (33:2). CLIPS/Ada is available for free

to any U.S. Government agency or government contractors by calling the CLIPS Help Desk at

(713)280-2233. It is available outside of the U.S. Government and contractors through COSMIC,

the NASA software distribution center.

To become familiar with CLIPS and CLIPS/Ada, four manuals should be acquired by calling

the CLIPS Help Desk:

1. CLIPS User's Guide (35)

2. CLIPS Reference Manual (34)

3. CLIPS/Ada Architecture Manual (33)

4. CLIPS/Ada Advanced Programming Guide (32)

The source code for CLIPS/Ada was obtained via tape on reel #9446 which is now maintained

by AFIT/SC. The tape contains CLIPS/Ada source code in ASCII form, a "README.TXT" file,

some sample knowledge bases, and two .COM files (COMPILE.COM and LINK.COM) to compile

and link the source code. It also contains an executable version of CLIPS/Ada. However, a VAX

Ada compiler version 1.5 running under VAX-VMS 5.1.1 is used to create the executable. Therefore,

it is useless on Unix based machines.

Since the primary platform for this research is a SUN-3 running a version of UNIX and

a Verdix Ada compiler, several changes to the original source code are necessary. First, all the

CLIPS/Ada source code files had .ADA or .ADS extensions that are unacceptable to Verdix. All

133



.ADS files were changed to ".spec.a" files, and all .ADA files were changed to .a files. Once all the

names were changed, the code was transferred to Olympus and compiled. Several syntax errors

relating to incompatibility problems between VAX Ada and Verdix Ada were corricted. However,

many warning messages are still received when compiling CLIPS/Ada. These messages are due

to the source code authors explicitly declaring loop counters. VAX Ada obviously allows such

declarations; Verdix Ada allows them also but does not particularly care for them. Therefore,

Verdix Ada issues a warning message.

In order to facilitate CLIPS/Ada file compilation, five shell files are created. The execu-

tion of the shell file "shell-compile-allCLIPS" results in the compilation of all the CLIPS/Ada

files necessary for the Essential Subsystem compilation. To be specific, these files must be com-

piled prior to the compilation of the CLIPSWorking.MemoryInterface package. By executing the

aforementioned shell file, all the CLIPS/Ada source code is compiled with the exception of one file

- ClipsAda.a. Clips.Ada.a is the main routine for creating the CLIPS/Ada expert system shell

alone. If the CLIPS/Ada expert system shell alone is desired, simply execute the aforementioned

shell program first, followed by "ada -M ClipsAda.a'.

In order to document the necessary compilation order for the CLIPS/Ada source code, five

shell programs are illustrated. The command 'csh shell.compile-all.CLIPS' is the only command

that needs to be executed, because it invokes the four other shell programs.

This is the shell proyram 'shell.compile.allCLIPS' which controls the compilation of all the

CLIPS/Ada source code. Note that the execution of this shell program will result in the addition

of approximately 3.2 megabytes of disk space to the directory from which it is executed. This is

due to the creation of the Ada library files.

# This shell file makes 4 calls to other shell programs.
# Start this shell by typing> csh shell-compile-allCLIPS
# This shell compiles all the files required to use CLIPS/Ada
# as an embedded expert system. When this is done, you can

134



# can do "with embedded-.clips;" in the client program. 13 Sep 90, TLK.

# NOTE: You will get 30 or so compiler WARNING messages.
* You can ignore them, The code was written for a VMS Ada
# compiler which doesn't mind if you declare a variable like "counter"
# and then use it later in a stint like: for counter in 1-.10 loop.
# However, Verdix Ada doesn't like that; therefore, you may get
# warning messages depending on the Ada compiler used.
csh shell-.compile-.specs
csh shell-compile-.subunits
csh shell..compile-.bodies
csh shell-.compile-.separates

This is the shell program 'shell-compile-.spees':

# Shell to compile the CLIPS/Ada package specifications.
ada globals-.spec. a
ada analysis-.spec .a
ada buff er-.spec.a
ada clips-.spec.a.
ada clips io..spec .a
ada deffacts-.spec.a.
ada engine-.spec.a
ada envmnt...spec.a
ada evaluate-.spec a
ada expressn-.spec. a
ada factnngr..spec .a
ada generate-.spec .a.
ada lhsparse-.spec .a
ada math..spec.a
ada mathex-.spec.a.
ada memory-.spec.a
ada netmngr-.spec.a
ada ppclips-.spec .a
ada reorder-.spec .a
ada rulemngr-.spec.a.
ada rulelist-spec .a

ada scanner-.spec.a
ada strings-.spec.a
ada symbol-.spec.a.
ada sysio-.spec.a
ada sysprime..spec .a
ada syssecnd-.spec.a
ada userfun-.spec. a
ada utility-.spec-a
ada variable-.spec. a
ada dbugfunc-.spec.a
ada envnfunc-.spec a

135



ada memrfunc.spec a
ada rulefunc.spec a
ada factfunc.spec a
ada netwfunc.spec.a
ada strgfunc.spec. a
ada strgutil.spec a
ada mathlib.spec.a
ada dtmngr..spec.a
ada dtfunc-.spec.a
ada charutil-spec .a
ada multfunc-.spec.a

This is the shell program 'shell-compile..subunits'. Note that this shell program compiles the

file 'emclips-spec.a'. This file contains the specification for the package 'Embedded-Clips'. It is this

package that a client program must "with in" in order for the client to be able to directly access

the contents of the working memory of the CLIPS/Ada expert system.

# Shell to compile the CLIPS/Ada subunits. The first two are
# generics. The second two are specs. emclips-.spec.a contains
# the spec that is used to embed CLIPS/Ada in another program.
# They are placed in this separate file only because the COMPILE.COM
# file called these sub-units which distinguished then from the
.* remaining specs and bodies. Why? I'm not sure.
ada enumcvrt.a
ada evalgens.a.
ada syspred-.spec .a
ada emclips-.spec .a

This is the shell program 'shell-compile-bodies':

# Shell to compile the CLIPS/Ada package bodies.
ada analysis-.body. a
ada buff er-.body.a
ada vai-iable-.body. a
ada clips-.body.a
ada clipsio.body. a
ada deffacts-.body. a
ada emclips-.body. a
ada engine-.body.a
ada envmnt-.body.a
ada evaluate.body. a
ada expressn-.body. a

136



ada factmngr-.body a
ada, generate-.body a.
ada, lhsparse-.body a
ada. math-.body.a
ada mathex-.body.a
ada memory-.body.a
ada netngr-.body.a
ada. ppclips-.body a,
ada. reorder-.body. a
ada, rulemngr-.body a
ada, rulelist-body. a
ada, scanner-.body.a.
ada strings ..body a
ada symbol-body.a
ada sysio..body.a
ada syspred-.body a.
ada sysprine-.body. a
ada syssecnd-.body. a
ada, useriun-.body. a
ada utility-.body. a
ada dbugfunc-.body a
ada envnfunc-.body a
ada. memrfumc-.body a
ada rulefunc-.body a
ada, factfunc-.body a
ada, netwfunc-.body.a
ada, strgfunc-.body a
ada strgutil-.body a
ada mathlib-.body. a
ada, dtmngr-.body.a
ada dtfunc..body.a
ada. charutil-body. a
ada. multfunc.body.a

This is the shell program 'shell-compile..separates':

# Shell file to compile the CLIPS/Ada 'separate' subprograms.
ada drivefct.a
ada, joincomp.a.
ada matchret.a
ada buildnet.a
ada pttncomp.a
ada, rmrulent.a
ada compfact.a
ada, showjn.a
ada. showflks.a

137



Appendix D. CLIPS RULE BASE

This appendix presents the CLIPS rule base that was used to perform the syntax checking

for IDEFO models. Note that these rules are but a subset of the rules required to fully check the

syntax of an IDEFO model.

This file is called 'satool2.clp' and is separate from the SAtool II object code. It must be

available in the current path in order to perform the syntax check function contained in the Essential

Subsystem menu.

Essential Subsystem Rule Base
; File Name: satool2.clp
;; Date Last Updated: 12 Nov 90
;; Author: Terry Kitchen, GCS-90D
;; Points of Contact: Dr. Thomas Hartrum, Dr. Gary Lamont
; Description:

This file contains the rule base used by the
;; the CLIPS/Ada expert system portion of the Essential
;; Subsystem. This subsystem is to eventually be integrated ;;
;; with another system to form SAtool II, which is an Ada ;;
;; based IDEFO development tool.
; Purpose:

The purpose of this rule base is to check the
;; syntactic features of an IDEFO model whose representation ;;
,; has been converted to CLIPS readable facts.
; Methodology:

Whenever the "check syntax" option is chosen within ;;
,; the Essential Subsystem main menu, this rule base is loaded;;
,; into the working memory of the CLIPS/Ada expert system. ;;
,; The same option also begins the "recognize-act" cycle of ;;
;; the CLIPS inference engine which uses the rules below to ;;
;; "match" the LES of rules with facts, resolve conflicts
;; among eligible rules, and then fire the RES of rules, until;;
,; no rules are eligible to fire. This file must be within ;;
; Scope:

At the present time, this rule base only checks the ;;
;; syntactical features associated with the "essential" data ;;
;; of an IDEFO model. This rule base only checks a very
;; limited number of features of an IDEFO model. This is due ;;
;; primarily to the time constraints imposed on the research ;;
;; which prevented completion of all the translation routines ;;
; within the EssentialFactUtilities package of the
; Essential Subsystem.

138



;; Features Checkid:
The following subset of IDEFO features are checked:

;; 1) Each activity is checked to ensure it has at least one ;;

control.

;; 2) Each activity is checked to ensure it has at least one ;;

output.

;; 3) Each activity is checked to ensure it has an activity ;;

;; number.

;; 4) Each activity is checked to ensure it has a description.;;
;; 5) The current IDEF, model under development must have a ;;

;; project name. It cannot be null.

Output:

IDEFO syntax violations cause the user to receive

;; "error" mcssages. The lack of a description for an

,; activity warrants just a "warning" message, since it is

;; not part of the IDEFO diagram itself. If no "errors" are ;;

;; detected, a congratulatory message is output.

;; The rule "print-intro" precedes any syntax error, or

;; warning messages. This is guaranteed by the salience.

(defrule print-intro
(declare (sali:ze 10) )
(initial-fact)

(printout t crlf "****Essential Subsystem Syntax Messages****" crlf))

,; RULE FOR CHECKING PROJECT NAME

;; The rule "null-project-name" verifies that the current IDEFO

;; model under development has been assigned a name. Note that

;; this rule can be removed if the final implementation of SAtool II

;; forces the user to always enter a project name.

(defrule null-project-name

(project-name null)

(printout t "ERROR: The current project does not have a name." crlf)

(assert (syntax-error-occurred)))

;; RULE FOR CHECKING ACTIVITY NUMBER

;; The rule "null-activity-number" will fire if user has not

;; assigned an activity number to any of the activities.

(defrule null-activity-number

(act-numb ?activity null)

(printout t "ERROR: Activity " ?activity " must be numbered." crlf)

139



(assert (syntax-error-occurred)))

;; RULE FOR CHECKING ACTIVITY DESCRIPTION
::::::::::::::::::::::::::::::::::::::::::::::::::

;; The rule "null-activity-description" will fire if user has not

;; assigned a description to an activity. Unlike other violations,

;; this rates only a warning message if missing.

(defrule null-activity-description

(act-desc ?activity null)

(printout t "WARNING: Activity " ?activity " needs a description." crlf))

,; RULE FOR CHECKING OUTPUT ARROWS

;; The rule "zero-outputs" checks each activity to make sure it

,; does not have 0 outputs. If so, it is an error.
(defrule zero-outputs

(icom-activity-outputs ?act 0)

(printout t "ERROR: Activity " ?act " needs at least i output." crlf)
(assert (syntax-error-occurred)))

;; RULE FOR CHECKING CONTROL ARROWS

;; The rule "zero-controls" checks each activity to make sure it

;; does not have 0 controls. If it has no controls, it is an error.

(defrule zero-controls
(icom-activity-controls ?act 0)

(printout t "ERROR: Activity " ?act " needs at least I control." crlf)

(assert (syntax-error-occurred)))

*::::::::::::::::::::::::::::::::::::::::::::

;; TERMINATION RULES

;; The rule "exit-if-error" is the next to last rule that

;; can possibly be fired. If any errors have occurred, this rule

,; insures the expert system stops at this point.
(defrule exit-if-error

(declare (salience -1) )
(syntax-error-occurred)

(halt))

140



*The rule "no-errors-encountered" is the last rule that
can possibly be tired, because of its low salience. This

,rule will fire only if no errors have been encountered.
(def rule no-errors-encountered
(declare (salience -2))
?f ag <- (initial-fact)

(retract ?f lag)
(printout t "CONGRATULATIONS: go syntax errors encountered." crlf))

,,,,,,,,,,,,,,,,:;;ENDOF RULE BS;;;;;;;;;,,,,,,

141



Appendix E. PACKAGE AND SUBROUTINE HEADERS

This appendix presents the revised subroutine header format and the new package header

format that are used to document the Essential Subsystem source code. Presented first is the

revised Module/Subr "-tine/Procedure header format based on (16:34).

Since the term "module" is now used to refer to packages (7), it is recommended that the

word "module" be removed from the header name and the header format as well. For exam-

ple, "MODULE NUMBER" could become "SUBROUTINE NUMBER" or even "SUBPROGRAM

NUMBER". The package header can then be called a Module/Package header.

-- DATE: mm/dd/yy --

-- VERSION:
-- NAME:
-- MODULE NUMBER: --
-- DESCRIPTION: --

-- ALGORITHM: is some "well known" algorithm used? quicksort e.g. --

-- If so, state it; othervise briefly discuss the methodology: loops, --

-- case statements, etc.
-- PASSED VARIABLES: --

-- RETURNS: --
-- GLOBAL VARIABLES USED: --

-- GLOBAL VARIABLES CHANGED:
-- FILES READ:
-- FILES WRITTEN:
-- HARDWARE INPUT:
-- HARDWARE OUTPUT:
-- MODULES CALLED:
-- CALLING MODULES:
-- ORDER-OF: State the order of in Big-O notation. Embed analysis --

-- within the source code.
-- AUTHOR(S):
-- HISTORY:

142



This is the format developed and used for package headers.

-- DATE: mm/dd/yy

-- VERSION:
-- PACKAGE NAME:
-- LOCATED IN FILE:
-- PURPOSE: Is the pkg an ADT, Abstract State Machine, a group of --

-- operations? What does it provide?
-- PACKAGE VISIBILITIES REQUIRED: What is with'd in? --

-- PACKAGE COMPOSITION: Is there a spec and a body or just a spec? --

-- GENERICS INSTANTIATED: List packages instantiated in spec or bpdy.--
-- ADT DESCRIPTION: ONLY applicable if this is an Abstract Data Type.--
-- Follow ex.nples in "Data Structures With Pascal" by Horowitz and --

--'Sahni. The domain and operations are mandatory but the axioms --

-- are optional.
-- This is a sample entry:
-- ADT FOR NARY-TREE:
-- Structure NARYTREE(tree, natural, boolean, item) --

-- Declare
-- *Create() => tree --

-- Clear(tree) => tree --
-- Construct(tree, item, natural, natural) => tree' --
-- SetItem(tree, item) => tree' --

-- SwapChild(natural, tree, tree') => tree" --
-- IsEqual(tree, tree') => boolean --
-- IsNull(tree) => boolean --
-- ItemOf(tree) => item --
-- NumberOfChildrenIn(tree) => natural --
-- ChildOf(tree, natural) => tree' --

-- end
-- END NARY-TREE
-- *Note: Create is implemented in Ada by instantiation of --

-- the generic package and subsequent variable declaration. --

-- ORDER-OF: Simply list each procedure and function included in the --

-- package in a single column with its order-of next to it. Separate --
-- the list into 2 groups - those visible and those not visible. --
-- Only list procedures and functions whose modules are in the spec --

-- and body. Any "separate" modules should probably be flagged as --
-- such somehow. If order-ofs come from a text, site the source. --

-- This is a sample entry:
-- Visible: Copy O(n) --
-- Clear 0(0) --
-- Construct 0(1) --

-- Set-Item 0(1) --
-- Swap-Child 0() --

-- Is-Equal O(n) --
-- Is-Null 0(1) --

143



-- Item-Of 0() --

-- NumberOfChildrenuIn 0CI) --

-- Child-Of o(1) --

-- Hidden: (none)
-- Where n is the number of elements in the tree.
-- AUTHOR(S):

-- HISTORY:

144



Appendix F. SAMPLE IDEFo MODEL OUTPUT FILE

This appendix presents a sample output file for an IDEF0 project. The format of this file is

a CLIPS readable fact base. The data in the file is based on Figures 40 and 41 which represent

a sample IDEF0 model (project). Note that the data contained in the file is only a small subset

that would actually be required to represent this diagram in its entirety. Specifically, all the

facts associated with both the Project Manager and ICOM Relation Manager are stored. Also,

the activity number, activity description, activity name, and parent-child relationships from the

Activity Manager are stored. No state information from the remaining four managers is retrieved.

AUTHOR: Terr Kitchen IDATE:100190READER: I

PROJECT: Mrket Floppies IVER'1.0 DATE: I I I

company udget
r ans

quality standards

Market [ profit

cash . Floppies

labor force

machines

ACTIVITY NOITITLE: Market Floppies NUMBER:
A-0

Figure 40. A-0 Diagram for 'Market Floppies'

Assuming that Figures 40 and 41 have been entered into the Essential Subsystem via the

Essential Subsystem Test and Der'onstration Program, the following output file contains the state

information of the 'Market Floppies' project:

145



;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; SAtool II - IDEFO Essential Fact File - CLIPS Readable Format
;; Date and Time of File Creation 11/17/90 21:20:15

;;**START ALL FACTS**
(deffacts icom-facts

(icom-tuple Market-Floppies company-budget c 1)
(icom-tuple MarketFloppies profit o 2)
(icom-tuple Buy-Floppies company-budget c 3)

(icom-tuple Sell-inStoreA consumer-budget c 4)

(icom-tuple Manufacture-Floppies company-budget c 5)
(icom-tuple Market-Floppies plans c 6)
(icom-tuple Market-Floppies quality-standards c 7)

(icom-tuple Market-Floppies consumer-budget c 8)
(icom-tuple Market-Floppies raw-materials i 9)
(icom-tuple Market-Floppies cash i 10)
(icom-tuple Market-Floppies labor-force m 11)
(icom-tuple Market-Floppies machines m 12)
(icom-tuple Buy-Floppies cash i 13)
(icom-tuple Buy-Floppies floppies o 14)

(icom-tuple Sell-inStoreA floppies i 14)
(icom-tuple Sell-inStoreA profit o 15)
(icom-tuple Manufacture-Floppies raw-materials i 16)
(icom-tuple Manufacture-Floppies quality-standards c 17)
(icom-tuple Manufacture-Floppies plans c 18)

(icom-tuple Manufacture-Floppies labor-force m 19)
(icom-tuple Manufacture-Floppies machines m 20)
(icom-tuple Manufacture-Floppies floppies o 21)
(icom-tuple Sell-inStoreB floppies i 21)
(icom-tuple Sell-inStoreB consumer-budget c 22)

(icom-tuple Sell-inStoreB profit o 23)
)
(deffacts project-facts

(project-name Market-Floppies)
)

(deffacts activity-facts
(act-name Market-Floppies)
(act-numb Market-Floppies AO)
(act-desc Market-Floppies The company's business is to market)
(act-desc Market-Floppies five and one quarter inch floppy)
(act-desc Market-Floppies disks.)
(act-has-child Market-Floppies Buy-Floppies)
(act-has-child Market-Floppies Sell-inStoreA)
(act-has-child Market-Floppies Manufacture-Floppies)
(act-has-child Market-Floppies Sell-inStoreB)
(act-name Buy-Floppies)
(act-numb Buy-Floppies Al)
(act-desc Buy-Floppies Based on the company budget, use cash)
(act-desc Buy-Floppies on hand to buy floppies from an)
(act-desc Buy-Floppies outside source.)
(act-has-child Buy-Floppies null)

146



(act-name Sell-inStoreA)
(act-numb Sell-inStoreA A2)
(act-desc Sell-inStoreA Sell the floppies bought from an)
(act-desc Sell-inStoreA outside source in Store A only.)
(act-has-child Sell-inStoreA null)
(act-name Manufacture-Floppies)
(act-numb Manufacture-Floppies A3)
(act-desc Manufacture-Floppies Using our own manufacturing resources)
(act-desc Manufacture-Floppies and standards, make floppy disks.)
(act-has-child Manufacture-Floppies null)
(act-name Sell-inStoreB)

(act-numb Sell-inStoreB A4)
(act-desc Sell-inStoreB Sell the floppies that we make in)
(act-desc Sell-inStoreB Store B only.)
(act-has-child Sell-inStoreB null)
)
;;**END ALL FACTS**

147



AUTHOR: T'erry Kitchen IvATE:10°0°/91°l ADER I I I

quality standards

ARCTT O IL: Market Floppies NUMER:.0 DA E  [,J

i~~p consuirbde

Figure 41. AOdg Damfet FMarket Flopies

Fige4a8am foppiet Flopin

€14



Appendix G. ESSENTIAL SUBSYSTEM TEST AND DEMONSTRATION

PROGRAM SCRIPT

This appendix performs several purposes:

1. It demonstrates some of the functionality and menus of the Essential Subsystem Test and

Demonstration Program.

2. It illustrates how facts are stored in the CLIPS/Ada Working Memory.

3. It illustrates the results of performing a syntax check on a sample IDEF0 model.

In this script, the Essential Subsystem loads a project very similar to the sample IDEFo

project presented in Appendix F. This project has the same project name but is stored in a different

file - 'demo.syntax-errors.esm'. The only difference in the two projects is that the activity 'Sell in

Store B' does not have an activity number or description assigned to it. It also has no control or

output arrows. These features can be seen by examining the facts associated with 'Sell in Store B'

in the script file.

There two notable differences between the way the facts in the '.esm' file are stored versus

the facts used for syntax checking.

" The activity description is not stored. Only the words "null" or "not-null" are stored to

represent their presence or absence in the model.

" Some additional facts are present that convey the number of inputs, outputs, controls, and

mechanisms for each activity.

The script file that follows illustrates the initialization of the Essential Subsystem, followed

by the loading of the file 'demo.syntax-errors.esm'. Next, the facts associated with the project are

displayed. Finally, a syntax check is performed on the model, and the results output to the screen.

149



Of special note is the way that CLIPS stores all numbers as real numbers. This could be a potential

problem when performing matches with rules. However, there was insufficient time to research this

potential problem.

Of special note is the fact that the Essential Subsystem Test and Demonstration Program

automatically replaces all blanks in any multi-character input with underscores. This is necessary

because CLIPS recognizes blanks as delimiters between fields. Thus, the activity "Buy Floppies"

is represented internally as "Buy-Floppies" to prevent CLIPS from separating the name into two

fields.

Script started on Sat Nov 17 20:48:53 1990
csh> a.out

CLIPS/Ada Version 4.30 10/12/89

******************** ******* **** *** ***** ** ******

* THE ESSENTIAL SUBSYSTEM *
* TEST AND DEMONSTRATION MAIN MENU *
* -- SAtool II Level Operations -- *

Enter To select the desired operation
1. Restore (load) a project from disk

(Warning: all current data cleared)
2. Save the current project to disk
3. Display the current project name
4. Change the current project name
S. Create and display a data dictionary entry
6. Add a box/activity to the project
7. Connect 2 boxes with a data element/arrow
8. Check Syntax of current project
9. -- Submenus for Low Level Operations --
0. EXIT

SELECT A NUMBER: I
Enter the file name of the project to be restored.
Do not include the file name extension.
Enter Name: demo.syntax-errors

Looking for essential data under file name; derao-syntax-errors.esm
Preparing to read facts from disk into a buffer.
A set of facts has been extracted from the file.
Calling procedure to load icom facts.
Procedure to restore ICOM facts done.
A set of facts has been extracted from the file.
Calling procedure to load project name fact.

150



Procedure to restore project name is done.

A set of facts has been extracted from the file.

Calling procedure to load activity facts.
Procedure to restore activity facts is done.

Project successfully restored.

PRESS ANY KEY - THEN RETURN TO CONTINUE:

* THE ESSENTIAL SUBSYSTEM *
* TEST AND DEMONSTRATION MAIN MENU *
* -- SAtool II Level Operations -- *

Enter To select the desired operation

i. Restore (load) a project from disk
(Warning: all current data cleared)

2. Save the current project to disk

3. Display the current project name

4. Change the current project name
5. Create and display a data dictionary entry

6. Add a box/activity to the project

7. Connect 2 boxes with a data element/arrow

8. Check Syntax of current project

9. -- Submenus for Low Level Operations --
0. EXIT

SELECT A NUMBER: 9

* ESSENTIAL SUBSYSTEM EDITING AND DEBUGGING MENU *
* Warning: These operations allow you to directly *

* exercise the object operations. Use extreme care.*
* --Essential Model and Utility Level Operations-- *

Enter To select the desired submenu of operations

1. Activity Operations Menu
2. Data Element Operations Menu

3. Historical Activity Operations Menu
4. Calls Relation Operations Menu
S. ICOM Relation Operations Menu

6. Consists-Of Relation Operations Menu
7 CLIPS Operations Menu
8. ICOM Fact Operations Menu
9. Activity Fact Operations Menu
0. EXIT

SELECT A NUMBER: 7

Enter To select this operation
1. Assert all facts into the CLIPS Working Memory.
2. Display all the facts in CLIPS Working Memory.
3. Clear the CLIPS Working Memory.
0. EXIT

151



SELECT A NUMBER: 1
ICOM facts for CLIPS retrieved, if any.
CLIPS WM - a set of facts were asserted.

Project name fact retrieved.
CLIPS WM - a set of facts were asserted.
Activity facts for CLIPS retrieved, if any.
CLIPS WM - a set of facts were asserted.
All facts for CLIPS retrieved.

PRESS ANY KEY - THEN RETURN TO CONTINUE:

Enter To select thir operation
1. Assert all facts into the CLIPS Working Memory.
2. Display all the facts in CLIPS Working Memory.
3. Clear the CLIPS Working Memory.

0. EXIT
SELECT A NUMBER: 2

*********Start of Working Memory********.

f-1 (icom-tuple Market-Floppies company-budget c 1)
f-2 (icom-tuple Market-Floppies profit o 2)
f-3 (icom-tuple Buy-Floppies company-budget c 3)
f-4 (icom-tuple SellinStoreA consumer-budget c 4)
f-S (icom-tuple Manufacture-Floppies company-budget c 5)
f-6 (icom-tuple Market-Floppies plans c 6)
f-7 (icom-tuple Market-Floppies quality-standards c 7)
f-8 (icom-tuple Market-Floppies consumer-budget c 8)
f-9 (icom-tuple Market-Floppies raw-materials i 9)
f-jO (icom-tuple Market-Floppies cash i 10.99999999)
f-l (icom-tuple Market-Floppies labor-force m 10.99999999)
f-12 (icom-tuple Market-Floppies machines m 11.99999999)
f-13 (icom-tuple Buy-Floppies cash i 12.99999999)
f-14 (icom-tuple Buy-Floppies floppies o 13.99999999)
f-1S (icom-tuple Sell-inStoreA floppies i 13.99999999)
f-16 (icom-tuple Sell-inStoreA profit o 14.99999999)
f-17 (icom-tuple Manufacture-Floppies raw-materials i 15.99999999)
f-18 (icom-tuple Manufacture-Floppies quality-standards c 16.99999999)
f-19 (icom-tuple Manufacture-Floppies plans c 17.99999999)
f-20 (icom-tuple Manufacture-Floppies labor-force m 18.99999999)
f-21 (icom-tuple Manufacture-Floppies machines m 19.99999999)
f-22 (icom-tuple Manufacture-Floppies floppies o 20.99999999)
f-23 (icom-tuple Sell-inStoreB floppies i 20.99999999)
f-24 (icom-activity-inputs Market-Floppies 2)
f-25 (icom-activity-controls Market-Floppies 4)
f-26 (icom-activity-outputs Market-Floppies 1)
f-27 (icom-activity-mechanisms Market-Floppies 2)
f-28 (icom-activity-ir.puts Buy _Floppies 1)
f-29 (icom-activity-controls Buy-Floppies 1)
f-30 (icom-activity-outputs Buy-Floppies 1)
f-31 (icom-activity-mechanisms Buy-Floppies 0)
f-32 (icom-activity-inputs Sell-inStoreA 1)

152



f-33 (icon-activity-controls Sell-in-Store-A 1)
f-34 ico-activity-outputs Sell-in..Store_A 1)
f-36 (icon-activity-mechanisms Sell-.in-.Store-A 0)
f-36 (icon-activity-inputs Manufacture-.Floppies 1)
f-37 (icon-activity-controls Manufacture-.Floppies 3)
f-38 (icon-activity-outputs Manufacture-.Floppies 1)
f-39 (icom-activity-mechaiisms Manufacture-Floppies 2)
1-40 (icon-activity-inputs Sell-.in-.Store-B 1)
f-41 (icom-activity-controls Sellin_Store_B 0)
f-42 (icon-activity-outputs Sell-.in-.Store-B 0)
f-43 (icon-activity-mechanisms Sell-.in-.Store.B 0)
f-44 (proj ect-name Market-.Floppies)
f-46 (act-name Market-.Floppies)
f-46 (act-numb Market_.Floppies AO)
f-47 Cact-desc Market-.Floppies not-null)
f-48 (act-has-child Market-.Floppies Buy-.Floppies)
f-49 (act-has-child Market-.Floppies Sell-in.Store-A)
f-50 (act-has-child Market-.Floppies Maniufacture-.Floppies)
f-51 (act-has-child Market-Floppies Sell-.in-.Store.B)
f-52 (act-name Buy-.Floppies)
1-53 (act-numb Buy-.Floppies Al)
f-54 (act-desc Buy-.Floppies not-null)
f-55 (act-has-child Buy-.Floppies null)
f-56 (act-name Sell-.in-.Store-.A)
1-57 (act-numb Sell-in-Store.A A2)
f-58 (act-desc Sell-.in-.Store-A not-null)
f-5S9 (act-has-child Sell-.in-.Store-A null)
f-60 (act-name Manuacture-.Floppies)
f-61 (act-numb Manuacture-.Floppies A3)
1-62 (act-desc Manulactu?e-.Floppies not-null)
f-63 (act-has-child Manufacture-.Floppies null)
1-64 (act-name Sell-in-.Store-.B)
f-65 (act-numb Sell-.in-.Store_.B null)
f-66 (act-desc Sell.in..Store_.B null)
f-67 (act-has-child Sellin-Store-.B null)
**********End of Working Memory********.

PRESS ANY KEY - THEN RETURN TO CONTINUE:

Enter To select this operation
1. Assert all facts into the CLYPS Working Memory.
2. Display all the facts in CLIPS Working Memory.
3. Clear the CLIPS Working Memory.
0. EXIT

SELECT A NUMBER: 0

PRESS ANY KEY - THEN RETURN TO CONTINUE:

* ESSENTIAL SUBSYSTEM EDITING AND DEBUGGING MENU *

* Warning: These operations allow you to directly*

1 53



* exercise the object operations. Use extreme care.*

* --Essential Model and Utility Level Operations-- 

Enter To select the desired submenu of operations
1. Activity Operations Menu

2. Data Element Operations Menu
3. Historical Activity Operations Menu
4. Calls Relation Operations Menu
5. ICOM Relation Operations Menu

6. Consists-Of Relation Operations Menu
7 CLIPS Operations Menu

8. ICOM Fact Operations Menu

9. Activity Fact Operations Menu
0. EXIT

SELECT A NUMBER: 0

PRESS ANY KEY - THEN RETURN TO CONTINUE:

* THE ESSENTIAL SUBSYSTEM *
* TEST AND DEMONSTRATION MAIN MENU *

* -- SAtool II Level Operations -- *

Enter To select the desired operation
1. Restore (load) a project from disk

(Warning: all current data cleared)

2. Save the current project to disk
3. Display the current project name
4. Change the current project name
5. Create and display a data dictionary entry

6. Add a box/activity to the project

7. Connect 2 boxes with a data element/arrow

8. Check Syntax of current project
9. -- Submenus for Low Level Operations --

0. EXIT
SELECT A NUMBER: 8
ICOM facts for CLIPS retrieved, if any.
CLIPS WN - a set of facts were asserted.
Project name fact retrieved.
CLIPS WN - a set of facts were asserted.

Activity facts for CLIPS retrieved, if any.
CLIPS WM - a set of facts were asserted.

****Essential Subsystem Syntax Messages****

WARNING: Activity Sell-inStoreB needs a description.
ERROR: Activity Sell-inStoreB must be numbered.

ERROR: Activity Sell-inStoreB needs at least I output.
ERROR: Activity Sell-inStoreB needs at least 1 control.

Clips run completed. Rules fired 6

154



PRESS ANY KEY - THEN RETURN TO CONTINUE:

* THE ESSENTIAL SUBSYSTEM *
* TEST AND DEMONSTRATION MAIN MENU
* -- SAtool II Level Operations -- *

Enter To select the desired operation

1. Restore (load) a project from disk
(Warning: all current data cleared)

2. Save the current project to disk

3. Display the current project name
4. Change the current project name

5. Create and display a data dictionary entry

6. Add a box/activity to the project
7. Connect 2 boxes with a data element/arrow

8. Check Syntax of current project
9. -- Submenus for Low Level Operations --

0. EXIT

SELECT A NUMBER: 0
csh> exit
csh>

script done on Sat Nov 17 20:51:12 1990

155



Bibliography

1. Aho, Alfred V. and others. Data Structures and Algorithms. Reading MA: Addison-Wesley
Publishing Company, 1983.

2. Allen, Bradley P. and S. Daniel Lee. "Deploying Expert Systems in Ada." In Proceedings of
TRI-Ada'89, pages 181-190, New York: ACM, Inc., 1989.

3. Austin, Kenneth A. and others. "An Entity-Relationship Modeling Approach to IDEFO Syn-
tax," Proceedings of IEEE 1990 National Aerospace and Electronics Conference NAECON
1990, 2:641-645 (May 1990)..

4. Baker, Louis. Artificial Intelligence With Ada. New York: McGraw-Hill Publishing Company,
Inc., 1989.

5. Booch, Grady. Software Components With Ada: Structures, Tools and Subsystems. Menlo
Park CA: Benjamin/Cummings Publishing Company, Inc., 1987.

6. Booch, Grady. Software Engineering With Ada: Second Edition. Menlo Park CA: Ben-
jamin/Cummings Publishing Company, Inc., 1987.

7. Booch, Grady. Object Oriented Design With Applications. Redwood City CA: Ben-
jamin/Cummings Publishing Company, Inc., 1991.

8. Bowles, Adrion J. "A Note on the Yourdon Structured Method," ACM Software Engineering
Notes, 15(2):27 (April 1990).

9. Buchanan, Bruce G. and Reid G. Smith. "Fundamentals of Expert Systems." In Barr, Avron
and others, editors, The Handbook of Artificial Intelligence, Volume 4, chapter 18, Reading
MA: Addison-Wesley Publishing Company, 1989.

10. Chen, P. Pin-Shan. "The Entity-Relationship Model-Toward a Unified View of Data," ACM
Transactions on Database Systems, 1(1):9-36 (1976).

11. Connally, Ted D. Common Database Interface for Heterogeneous Software Engineering Tools.
MS thesis, AFIT/GCS/ENG/87D-8, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1987 (AD-.&189628).

12. Department of Defense. Computer Programming Language Policy. DOD Directive 3405.1.
Washington: Government Printing Office, 2 April 1987.

13. Department of Defense. Use of Ada in Weapon Systems. DOD Directive 3405.2. Washington:
Government Printing Office, 30 March 1987.

14. Gretaspan, Sol J. Requirements Modeling: A Knowledge Representation Approach to Software
Requirements Definition. PhD dissertation, University of Toronto, Toronto, Canada, 1984.

15. Hartrum, Thomas C. "IDEF0 Requirements Analysis." Class handout for EENG 593, Systems
and Software Analysis, October 30 1989.

16. Hartrum, Thomas C. System Development Documentation Guidelines and Standards (Draft
4 Edition). Department of Electrical and Computer Engineering, Air Force Institute of Tech-
nology, January 2 1989.

17. Hayes-Roth, Frederick. "Rule-Based Systems," Communications of the ACM, 28(9):921-932
(September 1985).

18. Horowitz, Ellis and Sartaj Sahni. Fundamentals of Data Structures in Pascal: Second Edition.
Rockville MD: Computer Science Press, Inc., 1987.

156



19. Johnson, Steven E. A Graphics Editor for Structured Analysis with a Data Dictionary. MS
thesis, AFIT/GE/ENG/87D-128, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1987 (AD-A190618).

20. Jung, Donghak H. Design of a Syntax Validation Toolfor Requirements Analysis Using Struc-
tured Analysis and Design Technique(SADT). MS thesis, AFIT/GCS/ENG/88S-1, School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, September
1988 (AD-A202725).

21. Kameny, Iris and others. Guide for the Management of Expert Systems Development. Research
Note R-3766-P&L, Santa Montica CA: National Defense Research Institute, Rand Corp, July
1989. Prepared under Contract MDA903-85-C-0030 for the Assistant Secretary of Defense for
Production and Logistics.

22. Kameny, Iris and others. Guide for the Management of Expert Systems Development: Addi-
tional Appendixes. Research Note N-2970-P&L, Santa Montica CA: National Defense Research
Institute, Rand Corp, August 1989. Prepared under Contract MDA903-85-C-0030 for the As-
sistant Secretary of Defense for Production and Logistics.

23. Kiem, Eric. "The Keystone System Design Methodology," ACM Ada Letters, 9(5):101-108
(July/August 1989).

24. Kim, Intaek. Expert System in Software Engineering Using Structured Analysis and Design
Technique(SADT). MS thesis, AFIT/GCS/ENG/90J-2, School of Engineering, Air Force In-
stitute of Technology (AU), Wright-Patterson AFB OH, June 1990 (AD-A223022).

25. Kruchten, Philippe. "Error Handling in Large, Object-Based Ada Systems," ACM Ada Let-
ters, 10(7):91-103 (September/October 1990).

26. Lamont, Gary B. "An Introduction to Big-O and His Friends." Class handout for EENG 586,
Advanced Information Structures, Fall Quarter 1988.

27. Luger, George F. and William A. Stubblefield. Artificial Intelligence and the Design of Expert
Systems. Redwood City CA: Benjamin/Cummings Publishing Company, Inc., 1989.

28. Marca, David A. and Clement L. McGowan. SADT Structured Analysis and Design Technique.
New York: McGraw-Hill Book Company, 1988.

29. Martin, James and Steven Oxman. Building Expert Systems: A Tutorial. Englewood Cliffs
NJ: McGraw-Hill Book Company, 1988.

30. Materials Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems Com-
mand, Wright-Patterson AFB, OH 45433. Integrated Computer-Aided Manufacturing (ICAM)
Function Modeling Manual (IDEFo), June 1981. Contract F33615-78-C-5158 with SofTech,
Inc.

31. Morris, Gerald R. A Comparison of a Relational and Nested-Relational IDEF Data Model.
MS thesis, AFIT/GCE/ENG/90M-1, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 1990 (AD-A220147).

32. NASA - Johnson Space Center. CLIPS/Ada Advanced Programming Guide Version 4.3,
November 1989. Contract NAS9-18002 with Barrios Technology, Inc.

33. NASA - Johnson Space Center. CLIPS/Ada Architeclure Manual Version 4.3, November 1989.
Contract NAS9-18002 with Barrios Technology, Inc.

34. NASA - Johnson Space Center - Artificial Intelligence Section. CLIPS Reference Manual:
Version 4.3 of CLIPS, July 1989.

35. NASA - Johnson Space Center - Artificial Intelligence Section. CLIPS User's Guide: Version
4.3 of CLIPS, August 1989. Written by Joseph C. Giarratano.

157



36. Ross, Douglas T. "Structured Analysis (SA): A Language for Communicating Ideas," IEEE
Transactions on Software Engineering, SE-3(1):16-34 (January 1977).

37. Shlaer, Sally and Steven J. Mellor. Object-Oriented Systems Analysis: Modeling the World in
Data. Englewood Cliffs NJ: Prentice-Hall Inc, 1988.

38. Smith, Nealon F. SAtool II: An IDEFo Syntax Data Manipulator and Graphics Editor. MS
thesis, AFIT/GCE/ENG/89D-8, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1989 (AD-A215289).

39. Sommerville, Ian. Software Engineering: Third Edition. Reading MA: Addison-Wesley Pub-
lishing Company, 1989.

40. Tevis, Jay-Evan J. An Ada-based Framework for an IDEFo CASE Tool Using the X Window
System. MS thesis, AFIT/GCS/ENG/90D-15, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1990.

41. Tsai, Jeffrey J. P. and J. C. Ridge. "Intelligent Support for Specification Transformation,"
IEEE Software, 3(6):28-35 (December 1988).

42. Visible Systems Corporation. The Visible Analyst Workbench. Unnumbered Product
Brochure. Waltham MA, 1989.

43. Yourdon, Edward. Modern Structured Analysis. Englewood Cliffs NJ: Prentice-Hall, Inc, 1989.

158



Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188
Putlic rec ortfrig buroen for this ¢cliection of information is estimated to average I hour per respose, including the time for reviewing Instructions, searching existing data sources,

'hermPg ar'd Maintaining the data needed, and completing ano reviewing the collection of Information Send comments regarding this burden estimate or any other aspect of this
co ;ectfon of information, including suggestions for reducing this burden to Washington HeadQuarters Services, Directorate for Information Operations and Reports. 1215 Jefferson
Oa$s Hich.%av Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0158), Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1990 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AN OBJECT ORIENTED DESIGN AND IMPLEMENTATION OF THE
IDEFo ESSENTIAL DATA MODEL USING ADA AND AN ADA BASED
EXPERT SYSTEM

6. AUTHOR(S)
Terry L. Kitchen, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER

AFIT/GCS/ENG/90D-07

9 SPONSORING 'MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12 . DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13 ABSTRACT (Maximum 200 words)
This investigation develops and implements an Ada based object oriented design (OOD) of the IDEFo Essential
Data Model called the Essential Subsystem, which includes an Ada based expert system for IDEF0 model
syntax checking. IDEF0 is a graphic approach to system description developed by SofTech, Inc. for the U.S.
Air Force Program for Integrated Computer-Aided Manufacturing (ICAM) and is a subset of the Structured
Analysis language. The IDEF0 Essential Data Model is an entity-relationship (E-R) model of the IDEF0 language
and represents the fundamental (essential) information of an IDEF0 model. The Essential Subsystem is so
named because of its use as a subsystem with the A.da based, IDEFo CASE tool, SAtool II, that is under
concurrent development. The development of SAtool II is part of ongoing research at the Air Force Institute
of Technology (AFIT), with the Strategic Defense Initiative Organization (SDIO), on the use of IDEF0 as a
software requirements modeling methodology. The design phase includes the mapping of E-R constructs into
objects in an OOD and the modeling of an expert system as just another object. The OOD is then implemented
in Ada, including the expert system, which is implemented using CLIPS/Ada.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Software Engineering, Ada Programming Language, Expert Systems, ICAM Defi- 172
nition Method Zero (IDEFo), Structured Analysis and Design Technique (SADT), 16. PRICE CODE
Object Oriented Design, Entity Relationship Modeling

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSNI 7540-01-280-5500 Standaod Form 298 (Rev 2-89)
Prescribed by ANS' Std Z39.18
298.102


